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A B S T R A C T

Urban-scale energy modeling of cool roof retrofits requires detailed knowledge of rooftop. This study developed a 
high-resolution Urban Building Energy Modeling (UBEM) framework that integrates roof reflectance data for 
Xiamen City, China. First, building types were classified using Geographic Information System (GIS) and machine 
learning techniques. Then, historical satellite imagery was analyzed to estimate the building year of each 
building. Roof color and reflectance were subsequently evaluated using Sentinel-2 and high-resolution imagery. 
This process resulted in the creation of a multi-source geospatial dataset comprising 37,132 buildings in Xiamen. 
A physics-based UBEM was then constructed using AutoBPS for 31,608 buildings to simulate energy performance 
under three scenarios: baseline, measured reflectance, and cool roof retrofit. Compared to the default reflectance 
value of 20 %, actual roof reflectance in Xiamen reduced energy consumption by 1.8 % (0.94 GWh). Further
more, three types of cool roof technologies, spray coatings, membranes, and metal roofs, achieved annual energy 
savings of 4.42 % (2.32 GWh), 3.58% (1.88 GWh), and 2.27 % (1.19 GWh), respectively. Their corresponding 
peak-load reductions were 10.7 %, 8.97 %, and 5.5 %. Among the 31,608 buildings modelled, 3790 buildings 
(approximately 12 %) met the economic feasibility criterion of a payback period under 10 years. Of these, 1298 
buildings were more suitable for membrane application and 2492 for spray coating. Over their life cycle, these 
buildings would require an initial investment of 35.3 million CNY and maintenance costs of 39.3 million CNY, 
yielding electricity savings of 151.67 GWh, equivalent to 89.6 million CNY, and resulting in net savings of 15.0 
million CNY.

1. Introduction

Urban building energy consumption and carbon emissions constitute 
a significant portion of global energy use and carbon output. To address 
this issue, governments worldwide are actively implementing energy- 
saving measures. In addition to adopting higher energy efficiency 
standards for new constructions, retrofitting existing buildings is a 
crucial component. For policymakers, it is essential to evaluate the 
effectiveness of various retrofitting strategies through modeling before 
implementation.

The roof of a building is a major building envelope component that 
receives significant solar radiation [1]. Heat transfer through the roof 
can account for more than 40 % of top-floor energy consumption and 
5–10 % of a building’s total cooling electricity usage [2]. To mitigate 
this, researchers often employ cool roofs and green roofs [3] to reduce 
radiation absorption. Cool roofs use high-reflectivity and high- 

emissivity materials to lower heat absorption, while green roofs pro
vide insulation, regulate stormwater runoff, and offer ecological benefits 
through vegetation coverage. However, these two strategies differ in 
applicability, cost, and climate adaptability, Jia et al. [4] evaluated both 
cool roofs and green roofs under current and future scenarios across six 
global cities, and projected that by 2100, and the Heating, Ventilation, 
and Air Conditioning (HVAC) energy consumption would be reduced by 
65.51 % and 71.72 %, respectively. He et al. [5] found that in Shanghai, 
green roofs reduced the cooling and heating loads of the top floor by 3.6 
% and 6.2 %, respectively, while cool roofs reduced the cooling load by 
3.6 % but increased the heating load by 10.4 %. These results suggest 
that in Shanghai and similarly warmer regions, cool roofs offer energy- 
saving potential comparable to green roofs.

Assessing the impact of cool roofs on energy consumption at an 
urban scale requires a fundamental understanding of urban building 
energy use [6]. Urban Building Energy Modeling (UBEM) is a technique 
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designed for this purpose, employing various approaches such as top- 
down and bottom-up models [7]. Among bottom-up methods, physics- 
based simulations and machine learning models are commonly used 
[8]. Retrofitting often involves new technologies and materials, which 
lack sufficient historical data. As such, machine learning and top-down 
methods may struggle to evaluate their effectiveness accurately. 83 % of 
retrofit studies utilize physics-based simulation tools like EnergyPlus 
and TRNSYS [9]. Bottom-up UBEM calculates energy consumption by 
simulating physical heat transfer and equipment energy interactions at 
the individual building level, then aggregates results to the urban scale 
[10]. This high-resolution approach offers significant flexibility in 
analyzing the impact of retrofitting strategies across regions. Addition
ally, due to variations in urban morphology, building compositions, and 
climate conditions, the same retrofitting measures may yield different 
outcomes in different cities. For example, Ang et al. (2023) observed 
that identical retrofit strategies led to significant energy savings in some 
cities but increased energy consumption in others, underscoring the 
necessity of context-specific solutions.

The quality of UBEM outputs is intrinsically linked to the quality of 
its inputs. Developing a bottom-up UBEM requires comprehensive data 
on all buildings in a region, presenting one of its biggest challenges [7], 
particularly in parameter calibration. Directly obtaining detailed 
building envelope data for each building is very hard, researchers 
typically rely on GIS tools to derive building year and type and use 
archetype modeling to estimate energy consumption [11]. Deng et al. 
[12] used GIS to classify buildings by correlating POI data with building 
attributes. Song et al. [13] integrated multi-source data for 539,119 
buildings in Shanghai and applied GIS and machine learning to deter
mine building year and type, subsequently constructing UBEM using 
AutoBPS. Similarly, Sun et al. [14] employed GIS to estimate building 
energy consumption and age in Wellington, New Zealand. Biljecki et al. 
[15] utilized 3D GIS data to estimate building year.

In addition to non-geometric parameters such as building year and 
type, exterior parameters have also garnered attention. Wang et al. [16] 
proposed a systematic method to obtain footprint, height, and window- 
to-wall ratio data. Chen et al. [17] employed natural language pro
cessing to extract building types in Beijing using points of interest. Lu 
et al. [18] analyzed structural, spectral, and spatial characteristics in 
satellite imagery, leveraging support vector machines and LiDAR data to 
classify buildings into single-family, multi-family, and non-residential 
categories with 70 % accuracy. Szcześniak et al.[19] extracted 
window-to-wall ratios for over 1000 buildings in Manhattan using street 
view images to calibrate UBEM.

Despite the importance of roofs in UBEM energy modeling [20], 
research combining roof retrofits with UBEM remains limited. Wang 
et al. [21] investigated green roofs in Xiamen, using GIS to classify 
buildings and prototype modeling to assess their impact, concluding that 
green roofs could achieve 1.62–1.83 % energy savings and 1.10–1.63 % 
peak load reduction citywide. Jia et al. [4] reported that cool roofs 
reduced cooling energy consumption by 67.18–86.70 % on average 
across six cities, while green roofs achieved reductions of 63.38–83.21 
%. Adilkhanova [22] found that green roofs in Seoul delivered energy 
savings of up to 0.64 kWh/m2 (7.7 %). Hosseini et al. [23] estimated that 
cool roofs in four cold-climate North American cities reduced peak 
power demand by 1.9–5.4 W/m2. Garshasbi et al. [24] researched 
buildings in Sydney, Australia, showed cool roofs reduced energy con
sumption by 29.8–72.4 % in residential buildings, 22.4–62.5 % in office 
buildings, and 13.2–29.1 % in commercial buildings. The effectiveness 
of cool roofs retrofit differs significantly across various cities. Building 
characteristics, such as the roof’s original reflectance, envelope prop
erties, ect., critically influence how cool roof retrofits affect energy 
consumption. Therefore, the performance of cool roof retrofits should be 
evaluated using data that reflect the specific urban and building contexts 
of each city. Currently, roof type detection is not integrated into UBEM 
well. Lalwani et al. [25] identified cool roofs in India but did not eval
uate their impact. Park et al. [26] used CNN to detect green and cool 

roofs across eight cities, estimating 14 % and 28 % energy savings, 
respectively. Qian et al. [27] employed a multitask deep learning 
network to classify roof types in Shanghai. Trevisiol [28] used very high- 
resolution satellite imagery to detect roof materials in Bologna, Italy, 
achieving 91 % accuracy. These literatures indicate that roof detection 
methods are relatively mature and can serve as a foundation for UBEM. 
Actual rooftop parameters have not been sufficiently explored in current 
bottom-up UBEM studies, and a dedicated evaluation framework for 
cool roofs within UBEM remains lacking. Roof-related parameters are 
often assessed using default values. However, relying on default as
sumptions without considering predicted rooftop conditions may 
introduce notable biases, particularly in cities withsubstantial cool roof 
coverage. Moreover, the method used to aggregate simulation results 
requires improvement, as shading effects from surrounding buildings 
can significantly influence the outcomes. A building-by-building 
approach would provide more accurate results. To address this gap, 
this study will develop a UBEM framework that incorporates the specific 
roof characteristics of Xiamen. The objectives of this study are as fol
lows: (1) To investigate the actual distribution of rooftop parameters in 
Xiamen; (2) To develop a UBEM for Xiamen that incorporates both real 
rooftop characteristics and surrounding shading conditions, in order to 
accurately capture the impact of cool roofs; (3) To quantify the energy- 
saving potential of various cool roof retrofit scenarios in Xiamen based 
on the developed UBEM.

2. Methodology

Fig. 1 presents the methodological framework developed for the 
construction of a comprehensive Xiamen building dataset and an UBEM 
for Xiamen city.

This UBEM framework employs a multi-stage process, integrating 
multi-source data to derive fundamental building geometry and type 
(Part I). This process involves the utilization of inputs such as points of 
interest (POIs), building footprints, areas of interest (AOIs), and satellite 
imagery. Data fusion, GIS analysis, and machine learning techniques are 
employed to ascertain building footprints, height/stories, and building 
types. Part II addresses the temporal dimension by estimating building 
year through GIS analysis and change detection applied to community 
datasets and historical satellite imagery. Part III characterizes building 
roof properties, specifically reflectance and color, through the analysis 
of very high-resolution (VHR) and Sentinel-2 satellite imagery. The 
outputs from Parts I, II, and III collectively provide detailed building 
dataset in Xiamen city, formatted as GeoJSON. Part IV is to translate this 
GeoJSON into EnergyPlus models using the AutoBPS (Automated 
Building Performance Simulation) tool. Subsequently, city-scale build
ing energy modeling is performed in Part V to model building energy 
consumption across Xiamen city. The application of cool roof technol
ogy as a building energy efficiency measure is then evaluated using the 
UBEM. The final results compare energy consumption under baseline 
roof properties, measured reflectance, and cool roof scenarios.

2.1. Introduction to the case study area

This study focuses on the center part Xiamen city as the research area 
as shown in Fig. 2. Xiamen city is situated within Fujian Province, in the 
southeastern coastal region of China. Geographically, the island is 
located approximately between 24◦26′ and 24◦32′ north latitude, and 
118◦04′ and 118◦11′ east longitude. Covering an area of approximately 
158 square kilometers, the island’s topography is predominantly hilly. 
Administratively, Xiamen city encompasses the Siming and Huli districts 
and has a population of approximately 1.2 million residents. The climate 
of Xiamen is characterized as a subtropical maritime monsoon climate, 
with an average annual temperature of around 21 ◦C and an average 
annual precipitation of approximately 1200 mm, with the majority of 
rainfall occurring between May and August.

This study builds upon previous research by expanding the scope of 
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analysis. GIS data from relevant sources for the target area are first ac
quired, including POIs, AOIs, land use data, building footprints, and 
specific neighborhood information. POIs are defined as distinct locations 
with functional significance, such as buildings or landmarks. Footprints 
represent the geometric boundaries of individual buildings or structures. 

AOIs encompass broader geographic regions of study, often including 
multiple footprints or POIs, providing a foundational framework for 
spatial analysis and classification.

As illustrated in Fig. 2(a), the red areas indicate a higher concen
tration of POIs, suggesting greater activity in these areas. Fig. 2(b) 

Fig. 1. Workflow of this study.

Fig. 2. Introduction of Xiamen.
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reveals the distribution of building floor counts, suggesting a prevalence 
of low-rise to mid-rise structures in Xiamen, with a significant propor
tion of buildings having between 3 and 18 floors. Furthermore, Fig. 2(c) 
presents the distribution of various POI types.

2.2. Data preparation

2.2.1. GIS data
The data incorporated in this study were derived from a multi-source 

geospatial database, encompassing Baidu Map, Amap (Gaode Map), 
Google Map, and OpenStreetMap. In accordance with the methodology 
of Song et al. [13], these datasets underwent a rigorous integration and 
calibration process to ensure inter-dataset consistency. The resulting 
harmonized data were subsequently aggregated, incorporating building 
type and building year attributes, to form the foundational dataset. For 
the Xiamen region, the integrated and calibrated dataset comprises 
3,731 AOIs, 224,586 POIs, and 37,132 buildings. Given that the ac
quired GIS data had been subjected to manual verification by a mapping 
company, exhibiting relatively high accuracy in attributes such as 
building height, this study employed building footprints with height 
information, registered against satellite imagery, rather than direct 
rooftop outline extraction. This approach was adopted to preserve 
detailed architectural features and to mitigate potential inaccuracies in 
rooftop delineation resulting from tile boundary discontinuities.

2.2.2. Multi-channel imagery
Previous studies often relied on default parameters for prototype 

building roof types, an approach that oversimplifies the heterogeneity of 
real-world urban environments. To address this limitation, the current 
research endeavors to contextualize prototype building roof reflectivity 
by leveraging high-spatial-resolution satellite imagery for improved 
accuracy. While multispectral satellite imagery, such as that acquired by 
Sentinel-2, offers valuable spectral information across visible to near- 
infrared wavelengths suitable for surface reflectance calculation, its 
spatial resolution (10–60 m) proves insufficient for detailed identifica
tion and analysis of complex and varied urban roof structures. In 
contrast, VHR imagery provided by Google satellites, boasting a spatial 
resolution of 0.25 m, enables the clear delineation of fine-scale archi
tectural features, facilitating precise roof extraction and boundary 
identification. This study employs the Python programming language in 
conjunction with the Google Earth Engine (GEE) platform to systemat
ically acquire and process both Sentinel-2 Multispectral Instrument and 
0.25 m VHR imagery from Google satellites for the accurate computa
tion of building roof reflectivity. Specifically, the “Sentinel-2A” dataset, 
provided by the European Space Agency and encompassing 13 spectral 
bands with a 5-day revisit frequency, was utilized. This dataset un
dergoes rigorous pre-processing, including radiometric calibration, at
mospheric correction, and geometric rectification, ensuring spectral and 
spatial consistency and accuracy. The study area is geographically 
constrained to a rectangular region spanning 118.05◦ to 118.20◦ East 
longitude and 24.40◦ to 24.58◦ North latitude. Temporal analysis was 
conducted across two distinct periods: May 1st to September 30th, 2024, 
to capture summer reflectivity characteristics, and December 1st, 2024, 
to February 1st, 2025, to represent winter reflectivity.

To minimize the influence of varying weather conditions on reflec
tance accuracy, surface reflectance data from the Google Earth Engine 
platform were employed. These datasets had undergone atmospheric 
and orthorectification corrections to ensure geometric and radiometric 
consistency. Image compositing was performed using pixels with low 
cloud coverage (QA60 ≤ 8 %), and only scenes meeting this criterion 
were included. A mean compositing method was adopted to mitigate the 
effects of short-term weather fluctuations and illumination in
consistencies. Reflectance values were extracted across two distinct time 
periods, May to September 2024 (summer) and December 2024 to 
February 2025 (winter), to capture seasonal variability. Subsequently, 
an average of the summer and winter reflectance values was calculated 

to obtain a single representative result. This temporally averaged value 
is considered robust, as it integrates multi-seasonal surface conditions 
while reducing noise introduced by transient atmospheric effects.

As illustrated in the Fig. 3, the 13 spectral bands of Sentinel-2A span 
the visible to shortwave infrared range, ordered by increasing wave
length. Specifically, B1 (443 nm, Coastal aerosol, 60 m) is dedicated to 
aerosol monitoring and coastal water analysis. B2, B3, and B4 (10 m) 
constitute the visible light spectrum, facilitating surface color identifi
cation. The red-edge bands, B5, B6, and B7 (20 m), are specialized for 
retrieving vegetation biochemical parameters. Bands B8 (near-infrared, 
10 m) and B8A (narrow near-infrared, 20 m) serve in vegetation clas
sification and water body delineation. B9 (water vapor, 60 m) supports 
atmospheric correction procedures, while B10 (cirrus, 60 m) is 
employed for cloud screening. The shortwave infrared bands, B11 and 
B12 (20 m), exhibit sensitivity to surface moisture and material 
composition. The blue, green, and red bands (B2–B4) effectively repre
sent surface color and vegetation cover within the visible spectrum. The 
near-infrared band (B8) is sensitive to vegetation health and enables 
discrimination between artificial structures and natural surfaces. The 
shortwave infrared bands (B11–B12) can penetrate atmospheric water 
vapor, allowing for the identification of spectral signatures of diverse 
roofing materials, such as metal and asphalt. These bands were selected 
to optimize the balance between spectral resolution, atmospheric 
correction robustness, and sensitivity to roof material heterogeneity, 
thereby supporting urban land cover classification and reflectance 
modeling.

In the process of aligning VHR and multispectral imagery, some 
alignment issues were encountered, necessitating the conversion of 
footprints to raster format. Additionally, this research acquired 0.25- 
meter resolution VHR imagery data from Google, encompassing the 
red, green, and blue (RGB) visible bands. To ensure spatial consistency 
between the VHR imagery and the Sentinel-2 multispectral data, precise 
registration was performed on the VHR imagery. This involved feature 
matching using the Scale-Invariant Feature Transform algorithm, and 
affine transformation methods were employed during the image pre
processing stage to execute geometric correction, thereby guaranteeing 
spatial alignment between the two datasets.

2.3. Building type

As shown in the Fig. 4, the classification of building categories in this 
paper relies on the systematic integration and intelligent analysis of 
multi-source open data. The study constructs a building attribute data
base covering the entire Xiamen by fusing building footprint data, high- 

Fig. 3. Spectral response for the Sentinel-2A multispectral instrument sensor.
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resolution satellite imagery, POIs, and land cover datasets. Firstly, POI 
attributes are associated with building geometry data (such as area, 
height, shape index) based on a spatial matching algorithm. Data fusion 
and redundancy elimination are performed using buffer analysis and 
natural language processing techniques to initially identify major 
functional types such as residential, commercial, and educational. For 
buildings lacking POI and AOI information indicating major functional 
types, K-means clustering is employed to group them based on their POI 
distribution patterns and morphological characteristics. Finally, land 
use data is utilized to supplement the information. Detailed methodol
ogy can be found in Song et al. [13]

2.4. Building year

In this study, the division of building year primarily relies on two 
methods as shown in the Fig. 5. The first method involves cross- 
referencing historical imagery. The second method utilizes data from 
real estate websites, which offer extensive information about the 

locations of residential communities and their corresponding building 
years. Additionally, the AOI data predominantly focuses on residential 
communities. Data from real estate websites often originate from in
formation uploaded by property developers, making this method 
capable of yielding more accurate, specific, and authentic data. This 
paper obtained specific information for 2033 residential communities on 
Xiamen city from real estate websites such as Lianjia and Anjuke. 
Considering that such data is commercially maintained in real time by 
property sales platforms, its accuracy and timeliness are significantly 
higher than those of open datasets or machine learning predictions. 
Therefore, we directly used this data to override the building year es
timates obtained from machine learning. By integrating this information 
with the AOI data, the construction years of 9210 buildings were 
updated. Among these, 914 buildings had a discrepancy of more than 
five years compared to the machine learning predictions, indicating that 
the building year prediction accuracy in this study exceeds 90 %.

Since the modeling parameters of buildings are mainly related to 
mandatory standards issued by the area, this paper references JGJ 
134–2001 and JGJ 134–2010 for residential buildings, dividing them 
into pre-2001, 2001–2010, and post-2010 categories, respectively. 
Commercial buildings are divided into pre-2005, 2005–2015, and post- 
2015 based on the standards GB 50189–2005 and GB 50189–2015, the 
referenced codes, JGJ 134 (specifically for residential buildings) and GB 
50189 (Design standard for energy efficiency of public buildings), are 
mandatory national standards in China. This means that building con
struction projects within their scope must comply with the requirements 
set forth in these documents. These standards dictate various design and 
performance criteria, which have been updated over time (as indicated 
by the different publication years). While they are national standards, 
they often contain specific provisions or are implemented alongside 
regional regulations that account for variations in climate zones and 
local conditions across China. The paper uses the effective dates of these 
different versions to categorize buildings based on the regulations they 
were likely designed and built under.

In our previous research methodologies, building data were typically 
downloaded from these temporal intervals, and machine learning 
techniques were employed for the detection of building changes. While 
this approach has demonstrated efficacy in rapidly expanding urban 
areas, its performance in Xiamen is suboptimal. This discrepancy is 

Fig. 4. Methodological framework of building type detection.

Fig. 5. Methodological framework of building year Detection.
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attributed to the substantial prevalence of roof renovation and recon
struction activities within Xiamen, as illustrated in the Fig. 6. Conse
quently, the accurate determination of building year through sole 
reliance on change detection proves to be challenging.

This paper introduces a novel approach (Fig. 7) that, unlike object 
detection algorithms like Mask R-CNN, leverages multi-year historical 
imagery and roof vector data. This method delineates building footprints 
across time, creating a temporal sequence of building extents. A CNN 
classification model then determines building presence within these 
footprints. Concurrently, significant roof color changes are identified. A 
transition from ’non-building’ to ’building’ indicates new construction; 
substantial color change without new construction signifies roof reno
vation; and a ’building’ to ’non-building’ to ’building’ sequence implies 
reconstruction, with the latter date assigned as the construction year.

To address the challenges of scale diversity, shape complexity, and 
background interference in Xiamen’s historical satellite imagery, we 
employed transfer learning and the lightweight MobileNet V2 archi
tecture (with depthwise separable convolutions and inverted residual 
modules for efficient feature extraction – 75 % fewer parameters than 
ResNet-50). This approach improved generalization for building fea
tures. The dataset comprised 678 building and 247 non-building images 
(bare land, grassland, construction sites, etc.). Preprocessing included 
standardization using ImageNet statistics (mean [0.485, 0.456, 0.406], 
std [0.229, 0.224, 0.225]) for stability and faster convergence. Data 
augmentation, including horizontal/vertical flips, brightness/contrast 
adjustments, and cloud and shadow simulation, expanded the dataset to 
3700 images, simulating real-world variations and improving model 
robustness. The data was split 60:20:20 for training, validation, and 
testing.

During the model training process, Focal Loss was used as the loss 
function. Focal Loss dynamically adjusts the contribution of each sample 
to the total loss, enabling the model to focus more on hard-to-classify 
samples during training. Its formulation is presented in Eq. (1). 

FL(pt) = − α(1 − pt)
γlog(pt) (1) 

Where pt is the probability of belonging to the positive class, the 
parameter α is used to balance the importance of positive and negative 
samples, and the parameter α controls the loss weight difference be
tween easy and hard samples. This mechanism is particularly suitable 
for handling the class imbalance problem between building and non- 
building areas in satellite imagery, effectively improving the model’s 
ability to identify complex regions such as building boundaries. After 
testing, we finally determined α = 0.25, and γ = 2. The training adopted 
a two-stage transfer learning strategy. First, the backbone network was 
frozen for feature adaptation training, and subsequently, the entire 
network was unfrozen for end-to-end fine-tuning. A dynamic learning 
rate adjustment mechanism (initial value 0.001, decay coefficient 0.5) 
combined with an early stopping rule (terminating training if the vali
dation loss plateaus for 5 epochs) enabled rapid model convergence 
within the 20th training epoch.

In machine learning model evaluation, the meanings of common 
metrics are as follows: Loss measures the error between predictions and 
true labels (lower values are better); Accuracy represents the proportion 
of correctly predicted samples (easily affected by class imbalance); 
Precision reflects the proportion of actual positive samples among those 
predicted as positive, Recall represents the proportion of actual positive 
samples that were correctly predicted, and the F1-score is the harmonic 
mean of Precision and Recall, comprehensively evaluating the classifi
cation quality (especially suitable for scenarios with class imbalance). 
The results of this model are shown in the Table 1.

Table 1 indicates that although the model may exhibit some over
fitting, it can perform the task well and achieve a good balance between 
the two outcomes (generally, an F1 score greater than 0.85 is considered 
qualified). We believe that this method can more effectively detect 
building construction time, reconstruction time, and roof renovation 
time, providing results with high temporal resolution. Furthermore, the 
computational efficiency of this classification method is significantly 
higher than that of segmentation algorithms, reducing the processing 
time from days to hours. The required clarity of satellite imagery for 
classification is also greatly reduced, which means the data download 
burden will be significantly lower. For this task, the download volume 
was reduced from 250 GB to 10 GB, and the computation time was 
reduced from 30 h (6 h * 5 tasks) to 20 min (1 min * 20 tasks).

2.5. Building rooftop reflection

In multispectral remote sensing applications, the development of 
composite spectral indices through weighted band combinations is a 
common approach to enhance the discriminative capacity of specific 
surface features. This technique requires rigorous spectral analysis to 
determine optimal weighting coefficients that maximize inter-class 
separability while minimizing intra-class variability. The method 
adopted in this study was proposed and experimentally validated by 
Bonafoni and Sekertekin [29], and is considered effective for evaluating 
urban albedo. The calculation of the integrated reflectance is shown in 
Eq. (2). 

α =
∑N

B=1
ρB⋅wB (2) 

where ρB is the surface reflectance for a specific band B, and wB is the 
weighting coefficient computed as Eq. (3) 

wB =

∫ UB
LB

Rsλ⋅dλ
∫ 3

0.3 Rsλ⋅dλ
(3) 

where Rsλ is the at-surface spectral solar radiation at wavelength λ (µm), 
and UB, LB are the upper and lower wavelength for band B. wB represents 
the weighted fraction of solar radiation within the spectral range of band 
B. Integration limits were set to 0.3 − 3 µm, covering nearly all at-surface 

Fig. 6. Rooftop renovations in Xiamen in recent years.
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solar radiation, the specific parameters used and the corresponding 
calculated values are presented in Table 2.

As shown in Table 2, Near-infrared (B8) has the highest weight 
(34.17 %) due to its ability to effectively distinguish building rooftops 
and has an excellent signal-to-noise ratio. Blue light (B2) holds the 
second highest weight (22.66 %) and is used to enhance the high 
reflection characteristics of metal roofs. The weights of red light (B4) 
and green light (B3) reflect their sensitivity to common roof colors (such 
as red tiles and green coatings). Shortwave infrared (B11-B12) has a 
lower weight because it is easily affected by cloud and aerosol inter
ference, but it can help identify heat-absorbing materials such as 
asphalt.

2.6. Building energy model generation

The modeling process consists of two main components. The first 
involves data input, accomplished through Python scripts. Following the 
calculation of surface reflectance, shading effects from surrounding 
buildings are assessed.

To accurately reflect shading conditions while reducing computa
tional complexity, we first screened for potential shadow-casting 
buildings that could obstruct the target building. A building is identi
fied as a shading obstacle if its shadow affects the target building for 
more than 80 % of the time between 8:00 AM and 6:00 PM on the winter 
solstice, corresponding to a solar elevation angle of approximately 

18.6◦. During this process, no geometric simplifications were applied to 
the selected shadows, to faithfully represent shading conditions in areas 
with complex building layouts.

This filtering method reduces the number of shading surfaces and 
generates the shading geometry, as illustrated in Fig. 8. To further 
improve computational efficiency, identical floors with similar thermal 
conditions are represented by a single representative floor, as imple
mented in AutoBPS. The filtered model is then imported into CityEL 
[30], where the geometry of the EnergyPlus model is adjusted based on 
the building’s footprint dimensions: length, width, height, and number 
of floors. The final model, incorporating a uniform window-to-wall ratio 
of 0.4, is used as input for energy simulation.

For non-geometric parameters, the classification is based on 
mandatory national building regulations, categorizing buildings by 
building year and building type. Xiamen is classified as a hot summer 
and warm winter region according to these regulations. Residential 
buildings are divided into three temporal categories based on Standards 
JGJ 134–2001 and JGJ 134–2010: pre-2001, 2001–2010, and post- 
2010. Commercial buildings follow a similar tripartite classification 
according to Standards GB 50189-2005 and GB 50189-2015, segmented 
as pre-2005, 2005–2015, and post-2015. For mixed-use buildings, 
relevant regulatory criteria are applied to each functional component 
individually. In cases where data are not explicitly provided in the 
standards, estimations were made based on the building year. The final 
parameters used are presented in Table 3.

Fig. 7. Roof change detection method framework.

Table 1 
Confusion matrix for building detection model.

Metric Loss Accuracy F1 Precision Recall

Training 0.0007 0.9952 0.9968 0.9989 0.9947
Validation 0.0368 0.9551 0.9758 0.9758 0.9758
Test − 0.9467 0.9715 0.9642 0.9788

Table 2 
MSI Spectral Bands Information.

Channels Central wavelength 
(µm)

Bandwidth 
(µm)

UB and LB 

(µm)
wB

B2 0.492 0.066 0.3–0.533 0.2266
B3 0.559 0.036 0.533–0.614 0.1236
B4 0.665 0.031 0.614–0.730 0.1573
B8 0.833 0.106 0.730–1.226 0.3417
B11 1.612 0.092 1.226–1.880 0.117
B12 2.194 0.18 1.880–3.00 0.0338 Fig. 8. EnergyPlus model of the building, including surrounding buildings.
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2.7. Cool roof modeling

The baseline building models adopt a Typical IEAD (Insulation 
Entirely Above Deck) Roof structure, which is simplified in this study 
into three layers: structural substrate, insulation layer, and weather
proof membrane. The structural substrate provides load-bearing ca
pacity while the insulation layer typically composed of rigid foam or 
mineral fiber, offers continuous thermal resistance to mitigate thermal 
bridging. The outer protective membrane, usually made of tiles, mem
branes, or metal panels, ensures waterproofing and durability. The 

specific materials used can be found in the referenced report, and the 
resulting U-values are presented in Table 3. According to the DOE pro
totype building models, the default solar absorptance of all roofs is set at 
0.8, corresponding to a reflectance of 0.2.

In large-scale cool roof retrofits across urban environments, exten
sive demolition of existing roof assemblies would result in prohibitive 
costs and operational disruption. Therefore, this study explores three 
minimally invasive retrofit strategies that require limited structural 
modification: spray-applied coatings, membrane roofing, and metal 
roofing, as illustrated in Fig. 9.

Spray coating systems offer a cost-effective solution utilizing liquid- 
applied reflective materials that adhere directly to existing roof sub
strates. Membrane roofing enhances durability by incorporating pre- 
manufactured sheets with superior waterproofing and solar reflectance 
properties. Although metal roofing systems involve more complex 
installation procedures, they provide excellent longevity and thermal 
performance with minimal additional structural loading. The materials 
and associated costs for each retrofit strategy are presented in Table 4.

To systematically evaluate the impact of cool roof retrofits on energy 
consumption and economic viability, this study establishes a structured 

Table 3 
EnergyPlus model settings of each prototype building parts of Xiamen.

Residential part Commercial part

Parameters Pre- 
2001

2001–2010 Post- 
2010

Pre- 
2005

2006–2014 Post- 
2015

Exterior wall 
U-value(W/ 
(m2*K))

2.47 2 1.5 1.8 0.8 0.6

Roof U-value 
(W/ 
(m2*K))

1.8 1 0.9 1.55 0.7 0.5

Window U- 
value (W/ 
(m2*K))

5.84 4.09 4.09 6.4 3.5 2.5

Window 
SHGC

0.62 0.362 0.362 0.69 0.4 0.3

Lighting 
power 
density (W/ 
m2)

5.5 5.5 5.5 15 11 9

Equipment 
power 
density (W/ 
m2)

4 4 4 20 20 15

Occupancy 
(person/ 
m2)

0.05 0.05 0.05 0.125 0.125 0.125

Cooling/ 
heating 
setpoints 
(◦C)

26/ 
18

26/18 26/ 
18

26/ 
20

26/20 26/ 
20

Cooling/ 
heating 
COP

2.7/ 
1.9

2.7/1.9 2.9/ 
2.2

4.2 5.1 5.6

Fig. 9. Baseline roof and cool roof retrofit scenarios.

Table 4 
Cool roof retrofit parameters settings.

Parameter Unit Baseline Spray Membrane Metal

Investment RMB/ 
m2

− 80 170 350

Maintain time Year − 5 15 30
Maintain cost RMB/ 

m2
− 40 20 10

Thickness mm 0.37 0.5 1.2 0.5
Conductivity W/ 

m⋅K
1.1 0.1 1.1 312

Density kg/m3 70 1100 70 479
Specific Heat J/kg⋅K 349 1000 1194 349
Solar 

Absorptance
− 0.8 0.2 0.25 0.37

Thermal 
Absorptance

− 0.9 0.9 0.75 0.75

Visible 
Absorptance

− 0.7 0.2 0.6 0.7

Roughness − Very 
Rough

Medium 
Rough

Smooth Medium 
Smooth
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framework of Key Performance Indicators (KPIs). The Energy Saving 
Percentage (ESP) quantifies retrofit performance by comparing the En
ergy Use Intensity (EUI) of baseline and post-retrofit models, as 
formalized in Eq. (3): 

ESP =
EUIbaseline − EUIretrofit

EUIbaseline
× 100% (3) 

The Payback Period (PBP) quantifies the time required for an in
vestment to generate cash flows sufficient to recover its initial cost. This 
metric is widely used in capital budgeting due to its simplicity and 
intuitive risk assessment capabilities. The formula for calculating PBP 
can be expressed as follows in Eq. (4) 

PBP =
Initial Investment

Annual Cash Inflow
(4) 

Net Present Value (NPV) quantifies the economic viability of an in
vestment by calculating the difference between the present value of 
discounted cash inflows and outflows over its lifecycle, to assess the 
profitability of an investment. The NPV calculation is as shown in Eq. 
(5): 

NPV =
∑n

t=0

Rt

(1 + r)t (5) 

where Rt is the net cash inflow at the time t,r is the discount rate, and n is 
the remaining life of the building. In China, the life span of residential 
buildings is usually 50 years. The remaining life span of residential 
buildings built before 2001, 2001–2010, and built after 2010 is assumed 
to be 20 years, 30 years, and 40 years.

3. Results

Following the methods and modeling process described above, the 
primary result is a comprehensive building database for Xiamen city. 
This database encompasses 37,132 individual buildings, with each entry 
containing detailed information as specified in Table 5. All subsequent 
results presented in this study are derived from this database.

3.1. The building parameters distribution of Xiamen

Fig. 10 illustrates the distribution of building types and year built in 
Xiamen. As depicted, residential buildings constitute the predominant 
category, accounting for 60.8 % of the total. This prevalence is closely 
linked to Xiamen’s rapid urbanization process as a major residential city 
and Special Economic Zone. Within the residential category, low-rise 
(32.6 %) and mid-to-high-rise (22.4 %) buildings are the primary sub
types, reflecting urban development patterns and housing demands from 

different eras. Mixed-use buildings rank second at 16.7 %, emphasizing 
functional diversity in Xiamen’s urban planning, particularly evident in 
developments combining residential and commercial uses across various 
building heights. Commercial buildings represent 11.4 % of the stock, 
with shopping centers being the principal type, underscoring Xiamen’s 
function as a regional consumption hub.

Regarding building year attributes, it is noteworthy that a substantial 
majority of buildings (59.4 %) were erected prior to 2002. This high 
proportion of older stock is likely linked to Xiamen’s early designation as 
a Special Economic Zone in 1980 and the ensuing rapid development 
phase, consistent with the broader trend of accelerated urbanization and 
construction in China beginning in the 1980s. This initial period of 
urban growth established a large foundational building inventory. 
Furthermore, a distinct peak in construction activity (representing 11.5 
% of the stock) is observed around 2009. This surge potentially corre
lates with national economic stimulus policies implemented in China at 
the time, coupled with the rapid expansion of Xiamen’s local real estate 
market.

3.2. The building roof distribution

Fig. 11 illustrates the spatial distribution of rooftop colors on Xia
men, derived from standardized 100  m × 100 m grid-based analysis. As 
shown in Fig. 11(a), the spatial heterogeneity of rooftop colors reveals 
distinct patterns across different urban zones. These data are based on 
rooftop color statistics extracted from remote sensing imagery. Fig. 11
(b) presents the detailed extraction for individual buildings, demon
strating that the employed image processing methodology involving 
multispectral image fusion and color correction successfully captures 
the main color characteristics of building rooftops. The accuracy of this 
extraction facilitates a reliable representation of urban rooftop hues. In 
Fig. 11(c), the color composition histogram further indicates that light- 
colored rooftops dominate the urban fabric, while red-toned roofing 
materials also occupy a considerable proportion. Such a distribution 
pattern reflects a dual strategy in urban planning: on the one hand, light- 
colored and higher-albedo rooftops are widely adopted in newly 
developed districts to improve thermal performance and reduce cooling 
energy loads, and the controlled presence of red-toned rooftops supports 
the preservation of the city’s architectural identity and visual coherence.

Fig. 12 presents the analysis results of rooftop reflectance within the 
study area of Xiamen. Fig. 12(a) displays the spatial distribution of 
rooftop reflectance values, which range from 0 to 0.46. In this map, 
darker shades correspond to lower reflectance values, while lighter 
shades indicate higher reflectance. Fig. 12(b) shows representative 
rooftop imagery paired with annotated reflectance values, illustrating 
how different materials and surface colors influence reflectance char
acteristics. Fig. 12(c) provides a histogram that statistically summarizes 
rooftop reflectance across the entire study region. The results indicate 
that most rooftops have reflectance values concentrated around 0.25, 
and the overall distribution approximates a normal curve. This suggests 
that a majority of rooftops in Xiamen exhibit low to moderate solar 
reflectance. From an urban energy perspective, such reflectance levels 
imply opportunities for energy efficiency improvement through the 
adoption of cool roof technologies, which typically feature reflectance 
values above 0.7.

3.3. The UBEM result

3.3.1. Baseline
Fig. 13 presents the simulated distribution of energy use intensity 

(EUI) for 31,608 buildings in 37,132 buildings in Xiamen, a represen
tative city in the hot summer and warm winter climate zone. The 
simulation integrates three key influencing factors: building year (which 
primarily affects the thermal performance of the building envelope), 
surrounding shadings, and roof solar reflectance. The analysis reveals 
that electricity EUI primarily associated with cooling demand and 

Table 5 
Main parameters of Xiamen building database.

Name Data 
Type

Description

Geometry Polygon 2D coordinates defining the building footprint
Type String Building category (e.g., Residential, Commercial)
Year Detail Number Specific building year (e.g., 2010)
Year String Year range or textual description (e.g., “Pre-2000″)
R,G,B Numbers RGB color values (0–255) for Roof (e.g., “255,0,0″ 

for red)
Reflection Number Roof reflectivity coefficient (0–1)
Height Number Vertical height of the building in meters
Number Of 

Stories
Number Total count of stories

Gas EUI Number Gas Energy Use Intensity (kWh/m2/year)
Electricity EUI Number Electricity Energy Use Intensity (kWh/m2/year)
Gas Total Number Annual total gas consumption in kilowatt-hours 

(kWh)
Electricity Total Number Annual total electricity consumption in kilowatt- 

hours (kWh)
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represented by the blue/cyan distribution exhibits a wide range and 
multimodal pattern, indicating the heterogeneity in building energy 
efficiency across the city. In contrast, the natural gas EUI mainly used for 
domestic hot water and shown in red/orange remains consistently low 
and narrowly distributed, suggesting its limited sensitivity to envelope 
characteristics and solar heat gains.

The categories shown in Fig. 13 each exhibit three major peaks, 
reflecting the classification of buildings into three building-year groups. 
Beyond these peaks, the distributions also display quasi-normal char
acteristics, which closely resemble the distribution pattern of roof 
reflectance. However, these distributions are not strictly normal, 

primarily due to the influence of surrounding shading buildings, which 
modulates solar heat gains and thermal transfer, thereby affecting 
cooling loads. Given that cooling demand far exceeds heating needs in 
Xiamen’s climatic context, the control of solar heat gains is a critical 
factor in building energy conservation. The simulation explicitly in
corporates roof reflectance and shadings as input variables, enabling its 
outcomes to go beyond traditional assessments based solely on building 
year or single-envelope parameters. As a result, it more accurately 
captures the real-world impact of surface properties on energy use in 
buildings. This indicates that the simulation framework is capable of 
directly evaluating the energy-saving potential of high-reflectance 

Fig. 10. Results of building types and ages on Xiamen.

Fig. 11. Distribution of roof colors in Xiamen.
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technologies, such as cool roofs. By systematically adjusting the roof 
reflectance parameter in the simulation, it is possible to quantitatively 
predict the contribution of cool roof implementation particularly for 
high electricity-EUI building groups to energy consumption reduction, 
as well as its influence on the overall shape of the EUI distribution curve.

Fig. 14 illustrates the spatial differentiation of building energy con
sumption within the built-up area of Xiamen. The analysis of electricity 
consumption reveals significant spatial heterogeneity and clustering, 
with high-intensity electricity use concentrated in the central and 
southern parts of the island areas corresponding to the city’s core 

functional zones. The highest consumption in a single grid cell reaches 
59.4 GWh, largely reflecting the heavy dependence on electricity in 
commercial centers, high-density residential areas, and specific indus
trial activities. In contrast, although natural gas consumption also shows 
localized concentrations, it demonstrates a more extensive spatial 
coverage overall. Its peak consumption intensity (13.6 GWh) is sub
stantially lower than that of electricity, suggesting that natural gas is 
primarily used for residential purposes such as cooking and domestic hot 
water. As a result, its spatial distribution aligns more closely with the 
layout of residential neighborhoods.

Fig. 12. Distribution of roof reflection in Xiamen.

Fig. 13. Energy demand distribution across typical building types in Xiamen.
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3.3.2. Cool roof application
As shown in the Fig. 15, this study evaluates the effectiveness of 

different cool roof retrofit strategies in Xiamen, with a particular focus 
on the influence of roof surface properties. The “ Predicted ” scenario 
refers to results derived from measured roof reflectance values of actual 
buildings. Compared to the Baseline, the Predicted scenario demon
strates improved energy performance, indicating that the use of default 
reflectance values tends to overestimate building energy consumption. 
Among the cool roof technologies evaluated, metal, membrane, and 
spray-applied systems reduce total energy use by 1.19 GWh, 1.88 GWh, 
and 2.32 GWh, respectively corresponding to energy savings of 2.27 %, 
3.58 %, and 4.42 %. These reductions are primarily attributable to 
decreased cooling demand, aligning with the theoretical expectation 
that cool roofs reduce indoor heat gain by increasing solar reflectance 
and lowering roof surface temperature. It is worth noting that heating 
energy consumption shows a slight increase under cool roof scenarios. 
However, given Xiamen’s hot summer and warm winter climate, this 
increase is marginal and significantly outweighed by the reduction in 
cooling energy use.

Fig. 16 illustrates the cooling demand curves on July 21st, the typical 
summer day for buildings on Xiamen. Using the Predicted scenario as a 
reference, Fig. 16 shows that the Spray scenario consistently exhibits the 
lowest cooling energy consumption, while the Predicted scenario remains at the higher end.

During the early morning hours, cooling demand reaches its lowest 
level of the day, reflecting reduced building occupancy and lower 
ambient temperatures at night. As economic activities begin and solar 
radiation intensifies, cooling loads gradually increase, reaching a rela
tively stable plateau or forming a secondary peak in the early afternoon 
(approximately 13:00 to 15:00). Subsequently, during the evening hours 
(approximately 18:00 to 21:00), cooling demand rises sharply, reaching 
its daily maximum. This evening peak significantly exceeds the daytime 
levels and is primarily attributed to the large number of residential 
buildings, where returning occupants generate a surge in cooling de
mand. Notably, peak values are observed at both 18:00 and 21:00. 
However, the peak-shaving effect of cool roof technologies is more 
pronounced at 18:00, achieving reductions of 10.7 %, 8.97 %, and 5.5 % 
for the Spray, Membrane, and Metal scenarios, respectively. This 
enhanced performance is due to the continued presence of solar radia
tion during this period, making the reflectance-based cooling effect of 
cool roofs more effective.

Overall, Fig. 16 demonstrates the potential of cool roof technologies 
to reduce urban peak loads and provides a valuable analytical basis for 
optimizing energy dispatch and demand-side management strategies.

Three types of cool roof retrofitting methods, including spray 
coating, membrane, and metal were selected for evaluation, along with a 
corresponding economic assessment. Among the 31,608 buildings 

Fig. 14. Spatial patterns of electricity and gas use in Xiamen.

Fig. 15. Total heating and cooling energy consumption under different 
cool roofs.

Fig. 16. Peak load reduction effects of cool roof strategies on July 21st 
in Xiamen.
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where energy consumption simulation was feasible, 3790 buildings 
(approximately 12 %) were found to meet the economic feasibility cri
terion of a PBP of less than 10 years. Of these, 1298 buildings were more 
suitable for membrane retrofitting, 2492 for spray coating, while none 
were identified as suitable for metal retrofitting due to its excessively 
high initial investment cost.

Over the analysis period extending to the year 2070, the total initial 
investment for economically feasible retrofits was estimated at 35.3 
million CNY (approximately 4.8 million USD), with maintenance costs 
amounting to approximately 39.3 million CNY (5.3 million USD), 
resulting in a total life-cycle cost of 10.19 million CNY. Throughout their 
life cycles, these buildings achieved electricity savings of 151.67 GWh 
and a corresponding increase in natural gas consumption of 2.39 GWh. 
Based on an electricity rate of 0.6 CNY/kWh, the overall energy cost 
savings were estimated at approximately 89.6 million CNY, resulting in 
a net economic benefit of around 15.0 million CNY (2.0 million USD) 
over the building lifespans.

Further analysis, as shown in Fig. 17, indicates that in the context of 
Xiamen, both building type and the number of floors significantly affect 
the most suitable retrofitting method, while the building year appears to 
have a relatively minor influence. Nevertheless, older buildings tend to 
exhibit higher economic retrofitting potential. Newly constructed 
buildings, due to improved envelope performance, generally offer lower 
energy-saving potential, thereby demonstrating a decreasing trend in 
retrofit benefits.

In terms of building height, spray coating was found to be more 
advantageous in both low-rise and high-rise buildings (above 30 floors). 
This can be attributed to the relatively larger roof-to-volume ratio in 
low-rise buildings, where rooftop heat gain substantially affects energy 
consumption. In such cases, spray coating provides sufficient energy 
savings to achieve payback within 10 years, while also presenting lower 
life-cycle costs due to reduced maintenance frequency and expense. For 
mid-rise buildings, membrane retrofitting showed greater economic 
viability, likely due to its lower maintenance cost per cycle, extended 
performance lifespan, or improved cumulative energy-saving effect, 
which leads to greater net benefits.

With respect to building type, spray coating was generally found to 
be more suitable for residential buildings. This may be attributed to the 

typically lower Energy Use Intensity (EUI) of residential structures, 
making the low installation cost of spray coating more favorable. On the 
other hand, membrane retrofitting was identified as more appropriate 
for fast-food restaurants, large shopping malls, and other commercial 
buildings. These buildings are often characterized by daytime operation, 
substantial internal heat gains, and high cooling demands. In such sce
narios, the lower maintenance costs and higher cumulative energy- 
saving value of membrane systems contribute to a faster return on in
vestment within the 10-year evaluation period.

4. Discussion

Cool roofs have recently attracted increasing attention as a building 
energy efficiency technology, primarily involving the enhancement of 
roof surface reflectance. However, many of these studies rely on 
assumed or default roof reflectance values, which can significantly 
overestimate the energy-saving potential of cool roof applications. At 
the urban scale, a more accurate assessment requires actual reflectance 
data from existing roofs. Obtaining such data is a critical challenge in 
large-scale urban building energy modeling, particularly in less devel
oped regions where open-access building information is limited or 
nonexistent. Various researchers have attempted to address this gap by 
supplementing missing building information, such as footprint, height, 
type, age, and window-to-wall ratio, through diverse data sources and 
inference techniques. These data enhancements improve the realism of 
urban energy models, enabling more accurate quantification of the 
large-scale impacts of building technologies and supporting better- 
informed policy decisions.

This study presents a comprehensive case study of cool roof appli
cation in Xiamen. It details the full pipeline from data acquisition and 
preprocessing to urban-scale building energy simulation based on an 
integrated dataset of the entire island’s building stock. A city-level 
building database for Xiamen was developed, incorporating key infor
mation such as building year and type. This study proposes a method for 
estimating building year, which performs well even in fully built-up 
areas while significantly reducing computational cost and improving 
accuracy. In addition, the study expands the range of urban building 
data sources by integrating platforms such as Google Earth Engine and 
very high-resolution imagery. These sources enabled the inclusion of 
surface features such as roof color and reflectance into the database. To 
the best of our knowledge, this study presents the first city-scale eval
uation of cool roof applications based on actual rooftop reflectance data. 
Although green roofs are often discussed alongside cool roofs, as noted 
by He et al. [5], the cooling mechanisms of green roofs are more com
plex, as they involve evapotranspiration, shading, thermal insulation, 
and thermal mass. This complexity also poses challenges for modeling. 
Therefore, this study did not include modeling and comparison of green 
roofs but instead focused on extending the applicability of cool roofs 
using new data sources.

This study has several limitations. First, the analysis is limited to the 
central area of Xiamen, rather than the entire city. This may underes
timate the average energy-saving potential of cool roofs, as non-central 
areas may feature lower building heights and therefore benefit more. 
Second, global warming is an ongoing reality. In the face of future 
climate change, the widespread adoption of rooftop retrofits such as cool 
roofs and green roofs may influence the urban microclimate [31], this 
cooling effect could further enhance the energy-saving performance of 
cool roofs and improve urban thermal comfort. However, this study does 
not account for such potential feedback effects, representing a limitation 
in the current analysis. Thirdly, obtaining city-scale measured energy 
consumption data remains a significant challenge, and as such, the 
model was not calibrated with measured data. Nevertheless, to maxi
mize model accuracy, this study customized building parameters based 
on Xiamen’s local standards, employed the widely recognized Ener
gyPlus simulation engine, and benchmarked prototype buildings against 
measured or reported energy consumption data from similar regional Fig. 17. Distribution of Building attributes for different cool roof retrofit.
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buildings.

5. Conclusions

This study developed and applied a high-resolution UBEM frame
work, integrating actual roof reflectance data derived from multi-source 
satellite imagery, to comprehensively evaluate the energy-saving po
tential and economic feasibility of cool roof retrofits at the city scale for 
Xiamen, China. The key findings and contributions are summarized as 
follows: 

• Quantification of Actual Reflectance Impact: A detailed geospatial 
dataset for 37,132 buildings was created, incorporating building 
type, building year, and actual roof reflectance derived from 
Sentinel-2 and VHR imagery. Utilizing these measured reflectance 
values in the UBEM simulation for 31,608 buildings revealed a city- 
wide energy consumption reduction of 1.8 % (0.94 GWh) compared 
to simulations using the commonly assumed default reflectance of 
0.2.

• Performance Assessment of Cool Roof Technologies: Three distinct 
cool roof technologies were evaluated. Spray coatings demonstrated 
the highest annual energy savings potential at 4.42 % (2.32 GWh), 
followed by membranes roofs (3.58 %, 1.88 GWh) and metal (2.27 
%, 1.19 GWh). Correspondingly, these technologies achieved sig
nificant peak cooling load reductions on a typical summer day, 
estimated at 10.7 %, 5.5 %, and 8.97 %, respectively.

• Economic Viability and Implementation Strategy: An economic 
analysis identified 3790 buildings as economically viable for cool 
roof retrofitting, defined by a payback period of less than 10 years. 
Among these, spray coatings were suitable for 2492 buildings and 
membranes for 1298 buildings. The life-cycle assessment for these 
feasible retrofits projected net savings of approximately 15.0 million 
CNY, resulting from 151.67 GWh of electricity savings against an 
initial investment of 35.3 million CNY and maintenance costs of 39.3 
million CNY.

In conclusion, this study provides a city-scale assessment of cool roof 
potential in Xiamen based on actual rooftop conditions, offering crucial 
quantitative insights into energy savings, peak load reduction, and 
economic feasibility. The findings and the developed UBEM framework 
serve as a valuable reference for policymakers and urban planners in 
formulating targeted energy efficiency strategies and promoting sus
tainable building retrofitting programs, particularly for Xiamen and 
other cities with similar climatic conditions and urban characteristics.
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