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A B S T R A C T   

Urban building energy modeling is crucial for guiding carbon reduction policies, but acquiring reliable data at 
the urban scale remains challenging. This study develops a model for Shanghai City, China, by integrating multi- 
source open data. Eight data sources were collected, including maps, satellite imagery, and GIS data, covering 
609,763 building footprints and 539,119 buildings (1.57 billion m2). Spatial analysis, supervised learning, and 
unsupervised machine learning methods were used to categorize buildings into 63 prototypes, and classification 
accuracy reached 95 %. Historical satellite data and community boundaries determined the year built for over 95 
% of buildings. Prototypes were modeled in AutoBPS using local energy saving standards and simulated in 
EnergyPlus to derive energy use intensities aligning with government ranges. This work demonstrates a practical 
data fusion approach to develop large-scale, reliable urban building energy models. Integrating heterogeneous 
open data sources expands the coverage of open data and improves accuracy. The framework and insights 
provide a valuable foundation to leverage open data for advancing city-scale energy modeling and sustainability 
planning.    

Abbreviations 
POIs Points of Interest 
EUI Energy Use Intensity 
UBEM Urban Building Energy Modeling 
HVAC Heating, Ventilation, and Air Conditioning 
AOIs Areas of interest 
GIS Geographic Information System 
DOE U.S. Department of Energy 
OSM OpenStreetMap 

1. Introduction 

China accounts for 22 % of global energy consumption. In recogni
tion of this, China has committed to achieving carbon peaking in 2030 
and carbon neutrality in 2060. Simultaneously, the urbanization rate in 
China has experienced a substantial increase from 37.7 % in 2001 to 
65.22 % in 2022. This trend has led to a notable growth in the total 

urban building floor area, reaching 66 billion m2 in 2020. This data 
includes 29.2 billion m2 for urban residential buildings and 14 billion m2 

for public and commercial buildings (Hu et al., 2022). Consequently, it is 
crucial to model urban building energy at the micro-level to successfully 
achieve carbon peaking and carbon neutrality goals and develop guiding 
strategies for urban decision-makers. 

Urban building energy modeling (UBEM) refers to the computational 
representation and simulation of the performance characteristics of a 
collective of buildings within an urban context. UBEM could provide 
quantitative insights to inform urban building design and energy poli
cymaking (Hong et al., 2020a). Two paradigms are predominantly uti
lized in UBEM: the top-down and bottom-up paradigms (Swan & 
Ugursal, 2009). The top-down paradigm is a macro-level approach, 
commencing from a holistic perspective and progressively refining to 
micro-level elements (Kavgic et al., 2010), primarily focusing on the 
correlation between energy use and macroeconomic variables. Howev
er, it often lacks a detailed exploration of technology choices and 
spatiotemporal characteristics (Reinhart & Cerezo Davila, 2016). 
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Conversely, the bottom-up paradigm operates at a micro-level, 
initiating with individual building characteristics and aggregating 
these to the city level, primarily employed in the study of individual 
behaviors, energy consumption analysis (Buckley et al., 2021), and 
optimization scheme formulation. The bottom-up physics-based urban 
building energy model is based on actual physical parameters and sce
narios to simulate individual building’s energy consumption (Ang et al., 
2020). Despite its strength in providing high-precision solutions for 
specific issues, it requires substantial data and computational resources, 
potentially limiting its practicality for extensive system studies (Wang 
et al., 2022a). 

Addressing data and computational resource challenges, UBEM often 
employs simplified methods by categorizing buildings into multiple 
prototypes. This paradigm process involves two steps: classification and 
characterization (Davila et al., 2016). Classification encompasses 
building type (Deng et al., 2021), construction year, internal structure, 
geometry (area, floor), heating, ventilation, and air conditioning 
(HVAC) systems (Pasichnyi et al., 2019a), and other relevant factors. 
Characterization then defines categories using local regulations or prior 
research. Despite potential errors of up to 99 % (Reinhart & Cerezo 
Davila, 2016) in individual buildings due to occupants’ behavior vari
ations and the microclimate, errors average at an urban scale. Validation 
studies show error ranges between 1 % and 15 % in large-scale modeling 
(Davila et al., 2016). Existing well-established prototype repositories 
include the U.S. Department of Energy (DOE)’s Prototype Building 
Models and TABULA’s building typologies. 

Nonetheless, UBEM demands extensive data, including building 
characteristics for modeling and aggregated urban energy consumption 
for calibration/validation. Developed regions like the United States and 
Singapore have ample city-level energy data, fostering UBEM research, 
which provides these cities with more guidance in energy policies (Jin 
et al., 2023). In contrast, many other countries, including China, face 
challenges in obtaining building information (Hu et al., 2022). Although 
some Chinese cities (e.g., Shanghai, Beijing, and Shenzhen) started 
gathering urban building data and promoting online energy monitoring, 
official building characteristics data remains unavailable. However, 
these cities still lack an open data portal specifically dedicated to 
building-related information. 

Many studies have made their effort to expand urban building 
characteristics databases by obtaining relevant information from other 
approaches. Deng et al. (2021) harnessed Geographic Information Sys
tems (GIS) data to assess 68,966 buildings in Changsha, China, identi
fying 59,332 building types with 86 % accuracy and using community 
boundaries to ascertain construction years. Their further research (Deng 
et al., 2022) classified these buildings into 66 prototype categories/ages, 
with urban energy consumption calculated by integrating prototype 
area and Energy Use Intensity (EUI). Chen et al. (2020) employed GIS 
and Natural Language Processing to automatically reclassify Beijing’s 
Points of Interest (POIs), determining building types based on POIs re
lationships with footprints, achieving 89 % accuracy. Lu et al. (2014) 
examined structural, spectral, shape, and spatial characteristics of the 
buildings in satellite images, using Support Vector Machines and LiDAR 
data to categorize buildings into single-family, multiple-family, and 
non-residential, with a 70 % overall accuracy rate. Du et al. (2015) 
employed GIS data and Very High-Resolution remote sensing imagery, 
extracting spectral, texture, and geometric information of buildings. By 
integrating these features through an enhanced random forest algo
rithm, they categorized 6084 Beijing-based edifices into seven groups, 
achieving an overall accuracy rate of 79.54 %. 

After the classification, there are two main diagrams to calculate the 
city’s energy consumption in UBEM: archetype by aggregation and 
building-by-building. The aggregation method involves calculating the 
EUI of representative urban prototype buildings, determining the total 
area of these prototypes and subsequently integrating the combined area 
with their respective EUIs to estimate the city’s energy consumption 
(Chen et al., 2019; Deng et al., 2022; Pasichnyi et al., 2019b). This 

paradigm calculates "averaged" building parameters (including geome
try, building types, etc.) for different types of buildings based on sta
tistics. The ultimate goal is to compute "averaged" building energy 
consumption for the entire large-scale area. And the climate files used 
represent the "average climate" parameters of the area. Hence, errors 
resulting from individual environmental and energy-use characteristics 
are "averaged out," and resulting in an acceptable error, Deng et al. 
(2022) validated their energy consumption results for 68,966 buildings 
in Changsha, China, against statistical yearbook data, ending with an 8.6 
% error. Österbring et al. (2016), in their validation for 433 buildings in 
Gothenburg, Sweden, achieved a 3 % error. Dall’O’ et al. (2012) re
ported a 10 % error in their validation for 6688 buildings in Lombardy, 
Italy. However, this paradigm fails to reach high accuracy on a small 
scale, as each building operates in a different climatic environment. And 
the occupant behavior patterns of buildings also vary, which can lead to 
significant errors when UBEM models are considered at the scale of in
dividual buildings, sometimes even up to 1000 % (Wang et al., 2018). 
For smaller computational scales, it is feasible to calculate the shading 
and energy consumption of each building individually. Davila et al. 
(2016) assigned 52 prototype buildings to 83,541 structures in Boston 
using official GIS datasets and building archetypes. Subsequently, they 
employed Rhino to compute the potential shading surfaces for each 
building and utilized EnergyPlus, the most widely used building energy 
consumption modeling engine at present, for individual simulations. 
While this approach captures the interactive relationships between 
buildings (e.g., long-wave radiation heat exchange, shadows), it de
mands significant computational resources. 

To automate UBEM analysis, researchers have devoted to developing 
UBEM tools: umi (Reinhart et al., 2013) is a Rhinoceros-based urban 
modeling tool that allows for comprehensive operational energy, 
daylighting, and walkability assessments of entire neighborhoods, uti
lizing simulation engines like EnergyPlus and Radiance/Daysim, along 
with Grasshopper and Python scripts. CitySim (Robinson et al., 2009) 
focuses on calculating heating and cooling demands; SimStadt, pri
marily employed for rapidly generating evaluation scenarios to assess 
city-scale heating requirements; City Energy Analyst (Fonseca et al., 
2016), a Python-driven tool with an intuitive graphical interface, 
streamlines analysis of building heating and cooling loads for district 
energy planning. Concurrently, TEASER(Remmen et al., 2018), another 
Python-based application, seeks to unite UBEM and Urban System En
ergy Modeling, enabling a detailed representation of urban built envi
ronments and fostering an extensive understanding of city-scale energy 
systems; CityBES (Hong et al., 2016), a web-based platform for simu
lating large-scale building energy performance, aids energy bench
marking, urban planning, retrofit analysis, building management, 
photovoltaic potential evaluation, and urban microclimate visualiza
tion. AutoBPS (Deng et al., 2023), a recent UBEM tool, utilizes GeoJSON 
input and EnergyPlus as its engine, providing a comprehensive UBEM 
for residential and commercial buildings. AutoBPS supports diverse 
energy characteristic exploration, mixed-use area scenarios, urban en
ergy demand, retrofit, and PV analyses. Although EnergyPlus was 
originally for individual building simulations, its physics-based features 
allow it to model urban scenarios effectively. It integrates well with 
Python, Grasshopper, and other tools, making it suitable for complex 
UBEM tasks. Luo et al. (2020) demonstrated its utility in a Chicago 
district study, where the district-level cooling energy demand increased 
by 1.39 % and heating demand decreased by 0.45 % when considering 
building surroundings. EnergyPlus is used in various UBEM tools such as 
CityBES, developed by the Lawrence Berkeley National Laboratory 
(Hong et al., 2016). URBANopt by the National Renewable Energy 
Laboratory (El Kontar et al., 2020), UMI by the Massachusetts Institute 
of Technology (Reinhart et al., 2013), and CESAR by the Swiss Federal 
Institute of Technology Zurich (Wang et al., 2018), all of which utilize 
EnergyPlus at their core. 

As previously mentioned, UBEM is very important to the develop
ment and planning of urban areas. However, acquiring extensive data 
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and modeling a whole city is not easy. Prior studies have investigated 
prototype buildings in Shanghai, encompassing residential (Peng et al., 
2021), office buildings (Hong et al., 2020b), commercial buildings, 
shopping malls, and hotel buildings, urban morphology (Wang et al., 
2022b), and retrofit payback (Yu et al., 2021). However, to the best of 
the author’s knowledge, extant research on Shanghai’s buildings pre
dominantly concentrates on specific building types or regions. An 
all-inclusive urban energy consumption model is still needed to evaluate 
the energy consumption of Shanghai’s entire building stock. 

Moreover, while publicly available GIS data offers potential for 
architectural modeling, it has limitations: reliance on single-source data, 
insufficient coverage of building data in China by well-known GIS 
platform OpenStreetMap (OSM), and possible redundancy and con
flicting information from different sources. This study aims to overcome 
these limitations by integrating multi-source GIS data, enhancing the 
model’s reliability and robustness. Furthermore, this study categorizes 
609,763 building footprints and 539,119 buildings in Shanghai City into 
21 building types and three construction periods, resulting in a total of 
63 distinct prototypes. The construction year of these buildings was 
determined using historical satellite imagery coupled with deep learning 
methods. Building upon this, Shanghai’s urban building energy con
sumption model was developed using AutoBPS. Subsequently, a 
comprehensive analysis of Shanghai’s annual energy consumption out
comes has been carried out, and this study has compared the integrated 
data with publicly available government data to verify the reliability of 
this approach. 

2. Methodology 

2.1. The workflow of this study 

Fig. 1 illustrates the workflow adopted in this study. Initially, rele
vant GIS data are gathered, encompassing building footprints, building 
heights, POIs, areas of interest (AOIs), as well as historical satellite im
ages of Shanghai. Additionally, both the mandatory standards of 
Shanghai, China, and the ASHRAE Standards 90.1 are collected. Sub
sequently, the building attributes data are integrated to classify and 
identify the buildings in Shanghai by employing spatial analysis, clus
tering, supervised analysis, and unsupervised analysis methods. After 
that, the construction years of these buildings are determined with the 
historical satellite images. In the third step, Shanghai’s prototype 
buildings are modeled using AutoBPS, incorporating the mandatory 
standards, ASHRAE Standards 90.1, and pertinent literature references. 
Next, EnergyPlus is utilized to compute the EUIs of these prototype 
buildings, enabling a comprehensive assessment of Shanghai’s urban 

building energy consumption. 

2.2. Introduction of the case study buildings information 

Shanghai, one of the most developed cities in China, has a permanent 
population of 24.8 million. Located in the eastern region of China, 
Shanghai lies on the west coast of the Pacific Ocean, along the eastern 
edge of the Asian continent, between 120◦52′ E and 122◦12′ E longitude 
and 30◦40′ N and 31◦53′ N latitude. With an average elevation of 2.19 m, 
Shanghai covers a total area of 6340.5 square kilometers and is divided 
into 16 districts. 

According to the classification of GB 50176-2016, Shanghai falls 
under the "3A" category, characterized as a "hot summer and cold 
winter". Fig. 2 depicts the map of Shanghai, including the kernel density 
of POIs, which can be regarded as an indicator of the area’s prosperity. 
The most bustling areas in Shanghai encompass Huangpu, Xuhui, 
Changning, Jing’an, Putuo, Hongkou, Yangpu, and certain parts of 
Pudong. The following are Minhang, Baoshan, Jiading, and Songjiang. 
The peripheral regions include Qingpu, Fengxian, and Chongming. 

2.3. Multi-source data fusion 

2.3.1. Data source introduction 
UBEM primarily focus on buildings, yet acquiring specific building 

data is more challenging compared to other GIS data. For effective 
UBEM modeling, data from various sources must be further processed. A 
minimum GIS data resolution of 10 m, covering Shanghai, is required for 
building analysis. This article utilizes data from eight sources mentioned 
in Table 1. The information contained in the data mainly includes 
Footprints, POI, AOI, Height, History Satellite Image, Year, Satellite 
Image, Land Type, and Energy Use Intensity (EUI). As for the sources, 
Baidu Map, Amap, and Google are among the data providers. Baidu and 
AMAP data are accessed via their APIs, but limitations lead to gaps in the 
data. AI Earth, an Alibaba affiliate, offers up-to-date building coverage 
data at a 10-meter resolution. The Global Human Settlement Layer 
(GHSL), from the European Union Research Center, offers free tools and 
data for assessing human presence worldwide, including primary cate
gorization of buildings into residential and non-residential. Addition
ally, Anjuke and Lianjia, Chinese real estate platforms, offer extensive 
residential community data. Some data sources may contain repeated 
information, while others can complement one another. 

This study primarily employs data in the Shapefile (.shp) format, a 
universal data configuration established by Environmental Systems 
Research Institute (ESRI). Additionally, GeoJSON is another commonly 
used format. Beyond the open data for Shanghai and China, open data in 

Fig. 1. Workflow of this study.  
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similar formats is extensively available worldwide, with most formats 
being convertible to the Shapefile format. 

Globally, OSM is recognized as the most comprehensive open data 
source. However, its dependence on user-contributed updates and 
maintenance results in variable quality and timeliness across different 
countries. Hence, researchers with access to high-quality local data are 
advised to integrate it with OSM data to enhance its quality. The practice 
is exemplified by local city databases (https://data.cityofnewyork.us/) 
and Singapore’s open data (https://beta.data.gov.sg/) platforms serve 
as regional open data repositories, while GlobalMLBuildingFootprints 
(https://github.com/microsoft/GlobalMLBuildingFootprints) and Open 
Buildings (https://sites.research.google/open-buildings/) provide data 
across multiple regions worldwide. 

Similar studies utilizing such data have been conducted in Ireland 
(Ali et al., 2020), Canada (HosseiniHaghighi et al., 2022), Beijing, China 
(W. Chen et al., 2020), Changsha, China (Deng et al., 2022), and Tokyo, 
Japan (Perwez et al., 2023), often relying solely on a single data source. 
Additional open data resources are available at https://3d.bk.tudelft. 
nl/opendata/opencities/ and related review(Jin et al., 2023). It should 
be noted that, besides the open data listed in the table, file formats used 
by paid APIs, such as those offered by Google and Microsoft, are also 
convertible to the formats used in this study, indicating that the methods 
described herein are fully scalable (Table 2). 

3. Data fusion 

A total of 1491671 POIs were collected, comprising 780,347 from 
Baidu and 711,324 from Amap. A deduplication process was imple
mented to mitigate the impact of duplicate POIs on building categori
zation. The fusion of the two sources followed the approach shown in 
Fig. 3(a). Initially, all Amap POIs within the tolerance range of the target 

Baidu source were identified. Then, a natural language processing 
approach was used to remove semantically redundant POIs, utilizing the 
matching algorithm (Wu et al., 2022) developed explicitly for similar 
POI matching. The resulting non-redundant POIs totaled 1065,840, with 
780,347 from Baidu and 285,493 from Amap. The distribution of these 
POIs throughout Shanghai is illustrated in Fig. 3. 

Regarding building footprints, it is crucial to recognize that the 
footprints do not represent the entire building, but rather their indi
vidual components. The two sources were mutually supplemented to 
preserve as much information as possible. For duplicate buildings, the 
source with more components was chosen. As shown in Fig. 3, the Baidu 
dataset, having more components, constituted a larger portion of the 
final dataset with 593,754 footprints, encompassing 512,359 buildings 
accounting for 95 % of the total. The Amap source contributed 26,760 
footprints, which accounted for 5 % of the total. The final building 
database comprises 609,763 footprints and 539,119 buildings, covering 
1567,921,014 m2. 

Building height and number of floors are important for statistical 
analysis of prototype buildings. Baidu source lacks floor information, 
while the Amap source lacks height data. Dividing Baidu’s height by 
Amap’s floors resulted in an unreasonable floor height distribution. 
Regulations stipulate residential buildings have a minimum height of 
2.2 m, preferably 2.7 or 2.8 m. Shanghai government calculates building 
areas with heights between 2.2 m and 4.5 m. Therefore, it is necessary to 
calibrate this part of the data. According to the existing calculation 
standards, there are 275,929 footprints with heights below 2.2 m or 
above 4.5 m, accounting for 45.25 % of the data. Retaining the original 
Amap data, 333,834 footprints are available for analysis. 

Considering the ease and accuracy of obtaining building height, this 

Fig. 2. Case study area: Shanghai.  

Table 1 
Data sources and information used in this study.  

Information Data Source Format Cover Area Update 

Footprint Baidu Shapefile China Day  
Amap Shapefile China Day  
OpenStreetMap Shapefile Worldwide UN 

AOIs OpenStreetMap Shapefile Worldwide UN  
Baidu Shapefile China Day  
Anjuke, Lianjia csv China Day 

POIs Baidu Shapefile China Day  
Amap Shapefile China Day 

Land Cover AI earth tiff Worldwide Months  
GHSL tiff Worldwide Year  

Table 2 
Examples of multi-source data in typical cities.  

City Data Sources 

New York Footprints OpenstreetMap, Open Buildings, NYC Opendata  
POIs OpenstreetMap, NYC Opendata  
AOIs OpenstreetMap, NYC Opendata  
Land 
cover 

OpenstreetMap, AI Earth, GHSL 

Singapore Footprints Singapore’s open data, GlobalMLBuildingFootprints, 
Open Buildings, OpenstreetMap  

POIs Singapore’s open data, GlobalMLBuildingFootprints, 
Open Buildings, OpenstreetMap  

AOIs OpenstreetMap  
Land 
cover 

OpenstreetMap, AI Earth, GHSL  
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study recalibrates floor numbers based on actual building height. For 
buildings that do not comply with the standards, the number of floors is 
determined by dividing the building height by the established floor 
height norm: 2.8 m for residential and 3.5 m for non-residential 
buildings. 

Compliant buildings retain Amap floor data. Just dividing height by 
the standard floor height leads to information loss and significant de
viations in floor numbers. Several areas (Jing’an, Putuo, Xuhui, Yangpu, 
Changning) closely matching government land cover data were chosen 
for validation. We calibrated the building floors based on the total area 
data published officially, with Table 3 displaying the calibration results 
considering different data sources. In this process, the Amap data is 
multiplied by the built-in floor count, whereas the Baidu data is calcu
lated by dividing the height by the standard floor height. Results align 
closely with government reports, affirming the method’s relative accu
racy compared to other approaches. The calibrated distribution of floor 
heights is shown in Fig. 4, indicating that the existing method yields 
relatively more reasonable floor heights than other data sources. 

3.1. Building type identification 

This study employs various data forms, including POIs, AOIs, and 
building footprints. POIs, obtained from web map services such as 
Google Maps, Baidu Maps, and Amap, are GIS points characterized by 
attributes like name, entity category, and sub-category. Some POIs 
explicitly describe building attributes, while others describe other in
formation within the building. Based on their ability to reflect the 
building’s function, POIs are classified into main categories and sub- 

categories. Main-category POIs serve as a benchmark for evaluating 
the building’s main function, while sub-category POIs act as supple
mentary indicators. The main attributes of POIs include hotels, shopping 
malls, cultural art galleries, government institutions, residential build
ings, hospitals, schools, commercial office buildings, and factories. For 
buildings lacking a main category, clustering is employed to ascertain 
their category. Buildings lacking any geographical information can be 
supplemented through supervised learning and land data. Building 

Fig. 3. Multi-source GIS data.  

Table 3 
Comparison between government report data and present data.   

Land Cover (10,000 m2) Total Area (10,000 m2) 

Distinct Government Present Government Amap Baidu Present 

Jing’an 975 954.37 6179 6633.46 6308.82 6097.93* 
Putuo 1218 1205.19 6424 7629.53 6173.55 6609.13* 
Xuhui 1148 1085.25 6633 6385.49* 5807.6 6053.37 
Yangpu 1319 1264.39 6357 7766.14 5817.84 6357.08* 
Changning 718 716.19 4355 4612.18 3868.74 4142.9*  

* Most close to the government report data. 

Fig. 4. Building Floor Height Distribution from Different Sources.  
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footprints do not represent the buildings themselves. Single buildings 
with multiple height levels may have multiple footprints. AOIs, akin to 
POIs, are spatial boundaries carrying regional information. However, 
AOIs require assignments based on POIs. Consequently, their classifi
cation adheres to the same methodology as POIs, with the added benefit 
of encompassing multiple buildings. 

3.1.1. Assign attributes to building footprints 
Owing to the coordinate system settings in GIS and the matching 

discrepancies between different sources, numerous POIs that should be 
located within buildings may not be accurately positioned. To correctly 
associate these POIs with buildings, this study adopted the same 
approach, as shown in Fig. 5, to assign the POIs with a tolerance range. If 
a building is within the tolerance, the corresponding POI will be 
considered as within the building. 

The study implemented a tolerance range analysis for buildings 
varying in size from 1 m to 10 m, examining 12,134 POIs to assign more 
attributes of POIs to buildings. The evaluation of the effectiveness of 
different tolerance settings was conducted using the Area Under Curve. 
This analysis anticipated a significantly higher incidence of POIs within 
buildings (9.37 times more than those outside), leading to the conclu
sion that the optimal tolerance setting was 5 m. Despite this, it is crucial 
to note that a considerable number of POIs still fell outside the building 
perimeters, which may be attributed to missing building footprints. 
Observations from Fig. 6 also revealed that the majority of POIs were 
located within 5 m of the buildings. Consequently, a tolerance of 5 m 
was established as the most suitable for the study. 

When prioritizing buildings with more components, there is another 
issue to consider. Some POIs may be situated within one component and 
cannot be assigned to other components, even though they belong to the 
same building. The components are delineated based on the external 
height of the structure rather than its functional zoning. However, in 
most cases, the functional division of a building is determined by the 
floor on which it is located. 

In this study, the adopted approach involved merging these com
ponents based on their adjacency relationships and assigning distinct 
building IDs to each. Subsequent analyses were conducted based on 
these newly defined buildings, and the results were assigned to the 
associated footprints. This methodology aimed to maximize the impact 
of these POIs and enable the accurate identification of mixed-use 
buildings. Before applying this approach, 85,373 footprints were asso
ciated with POI attributes; after adopting this approach, 175,016 foot
prints had POI attributes, marking a 105 % enhancement. 

For the assignment of AOIs, buildings were considered to be within 
an AOI if they encompassed at least 80 % of its area. After the assign
ment of the AOIs attributes, 307,037 buildings had attributes. 

3.1.2. Identify the building type 
Additional geospatial information needs to be integrated to deter

mine the categorical attributes of buildings in geographical space, as 
shown in Fig. 7. 

3.1.2.1. The building attributes approach. The definition of building 
types is diverse. Table 4 displays three different classifications drawn 
from Shanghai government reports, research papers, and technical 

reports from research institutions. These classifications led to the se
lection of Factories, Schools, Offices, Restaurants, Shopping Malls, 
Hospitals, Commercial Mixed-Use, Education, Retail, and Other Mixed- 
Use were ultimately selected as the primary building categories. Based 
on this selection, this study reclassified the POI categories. Reducing the 
original 227 POI categories by manually filtering out irrelevant ones for 
building type analysis, such as public toilets. The refined classification 
yielded seven major categories: Residential, School, Office Building, 
Hotel Building, Shopping Mall, Hospital, and Factory. These categories 
directly reflect the main functions of buildings. Additionally, 5 minor 
categories were identified, namely Retail, Restaurant, Office, Food and 
Beverage, Recreation. 

After categorizing the attributes present in these buildings, further 
analysis was conducted by examining the quantities of each attribute. 
The following deduction rules were applied:  

• Buildings containing only one main category POI were classified 
based on the description of the main category POI.  

• Buildings containing two main category POIs accounting for more 
than 1 % were classified as corresponding mixed-use buildings. 

• Buildings containing three or more main category POIs were classi
fied as other mixed-use buildings.  

• Buildings without main-category POIs but containing sub-category 
POIs were clustered separately for further observation. 

With this approach, 255,513 buildings obtained their building types, 
accounting for 47.4 % of the total. 

3.1.2.2. The cluster approach. After assessing the primary attributes, 
some buildings without any primary attribute POIs were identified, yet 
they possess numerous non-primary attribute POIs, such as Food and 
Beverage and Office. While these attributes do not directly indicate the 
building’s function, they can provide insights for deducing it. Addi
tionally, for buildings with primary attributes, clustering based on their 
non-primary attribute POIs enables the inference of secondary attri
butes, facilitating the identification of additional mixed-use buildings. 

The number of clusters was determined using the "elbow method", 
and the clustering results were observed. Fig. 8 presents the proportion 
of POI attributes in buildings without primary attributes, divided into 
eight categories using the elbow method. These categories represent the 
typical POI distribution in eight types of buildings. Subsequent manual Fig. 5. Assign POI to the building footprints method.  

Fig. 6. Tolerance analysis.  
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categorization was based on these POI distributions: Clusters 1, 6, and 8, 
encompassing 13,277 buildings, were classified as Shopping Malls; 
Clusters 2, 4, and 7, totaling 17,903 buildings, as Shopping-Restaurant 
complexes; Cluster 3, with 10,420 buildings, as Office Buildings; and 
Cluster 5, consisting of 3019 buildings, as Other-Non-Residential. 

For buildings already possessing primary attributes, if they also 

contain secondary attribute POIs, only these secondary attributes are 
clustered. The overall function of the building is then analyzed in 
conjunction with its primary attributes. Fig. 9 displays the classification 
of secondary attributes for buildings with the primary attribute of an 
office building. The elbow method identified four categories. Through 
manual assessment, Clusters 1 and 4 were designated as Office- 
Shopping, while Clusters 2 and 3 were classified as Office-Restaurant. 
This approach supplemented 51,517 additional building types, ac
counting for 9.5 % of the total. 

3.1.2.3. The landcover approach. For the buildings that still lack attri
butes, land-cover data includes the classification of buildings. The land- 
cover data used in this study, sourced from the GHSL with a resolution of 
approximately 10 m, is adequate for discerning building types, as 
illustrated in Fig. 10. However, it only indicates whether a building is 
residential or not. In this research, if a building is covered by land-cover 
data and over 60 % of it is categorized as Residential, it is then classified 
as Residential. Similarly, if over 60 % is Non-Residential, it is classified 
as such. Buildings covered by less than 60 % of either category are 
considered outside the scope of this method. By using this method, 
94,609 additional building types were assigned, accounting for 17.5 % 
of the total. 

3.1.2.4. The supervised learning approach. As Fig. 11 illustrated, for the 
remaining buildings, considering the significant geometric differences 
between different building types, especially between residential and 
non-residential buildings, the attributes of the buildings were extracted 
by obtaining their bounding rectangles and related parameters, 
including Building footprint area, building footprint perimeter, number 

Fig. 7. Archetype identification of the buildings.  

Table 4 
Building types.  

Ref Building Main Types Source Type 

(ShangHai Statistical 
Yearbook 2022, 2022) 

Factory, Schools, Warehouses, 
Offices, Stores, Hospitals, 
Theatres 

Government 
Report 

(Shanghai Municipal 
Commission of Housing & 
Urban-Rural Development, 
2021) 

Government, Office, 
Restaurant, Shopping Mall, 
Health Care, Commercial 
Mixed-Use, Education, Culture, 
Sport, Tourist 

Government 
Report 

(Deng et al., 2022) Residential, Office, Commercial 
Mixed-Use, Hotel, School, 
Shopping Mall, Hospital, Retail, 
Education, Tourist 

Research 
Paper 

(An et al., 2023) Residential, Office, Education, 
Mercantile, Lodging, Health 
Care 

Research 
Paper 

(Prototype Building Models | 
Building Energy Codes 
Program, 2021) 

Residential, Office, Primary 
School, Retail, Restaurant, 
Hotel, Hospital, Shopping Mall 

Technical 
Report 

– Residential, Factory, Office, 
Restaurant, Shopping Mall, 
Hospitals, Education, Retail, 
Mixed-Use, Tourist 

This Paper  

Fig. 8. Buildings with no main attribute clustering.  
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of floors above ground, bounding box width, aspect ratio of bounding 
box, and footprint area to border area ratio. Subsequently, 3037 build
ings were manually labeled with their corresponding types, and the 
remaining buildings were classified using the random forest algorithm. 

3.2. The year-built identification 

3.2.1. History satellite image approach 
With the development of computer vision, the detection of archi

tectural changes using ultra-high-resolution satellite imagery (0.25 m/ 
pixel) can be very accurate. This technique involves year-by-year 

Fig. 9. Office buildings clustering.  

Fig. 10. The landcover data from GHSL.  

Fig. 11. The supervised learning approach.  
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comparison of historical satellite imagery, allowing for accurate iden
tification of each building’s alterations and the determination of their 
year-built. However, the acquisition and processing of ultra-high- 
resolution satellite imagery is cost-prohibitive for expansive areas like 
Shanghai. The ultra-high-resolution imagery amounts to 2.52 terabytes 
for just one year of satellite image, while the quality of regular high- 
definition imagery (1.07 m/pixel) is relatively poorer. Employing Arc
GIS Pro and mask R-CNN (He et al., 2017) for change detection in spe
cific regions establishes a baseline era for all buildings. This method is 
particularly effective for non-residential buildings with larger foot
prints, achieving an accuracy of 91.1 %. In contrast, its efficacy di
minishes for residential buildings, yielding only a 73.2 % accuracy rate. 
Therefore, another approach to obtaining the year built of buildings is 
by utilizing community boundaries. 

3.2.2. Community boundary datasets approach 
Real estate websites offer extensive data about the locations of res

idential communities and their corresponding construction years. 
Additionally, the AOI data predominantly focuses on residential com
munities. Utilizing web scraping techniques to retrieve the construction 
years of these buildings and assigning them to the respective properties 
allows for effective augmentation of building age information. Through 
this approach, 228,622 buildings have been updated, accounting for 
37.5 % of the total. 

3.3. Prototype models development 

This study presents a statistical analysis of the mean geometries of 
different building types, and corresponding prototype buildings were 
established. For the non-geometric parameters of these buildings, the 
parameters cited in authoritative sources will be used to augment the 
non-geometric information. These references encompass local govern
ment reports, technical reports, and relevant research papers. 

The establishment and calibration of the prototype building were 
conducted using AutoBPS, which effectively determines specific 
parameter types in a building, including the building’s envelope, HVAC 
system, solar hot water system, internal loads, etc., based on inputting 
the building’s geometric parameters, building type, and construction 
year. AutoBPS can also model mixed-use buildings mentioned in this 
paper. For some building types, where other literature data or official 

data are available, the AutoBPS-Param module(Chen et al., 2023) was 
used for calibration. The specific modeling process, illustrated in Fig. 12: 
involves merging the geometric shapes of existing reference buildings in 
Shanghai and determining non-geometric parameters based on local 
mandatory standards. The Shanghai prototype buildings are then sub
sequently finalized using the AutoBPS-Param. 

Regarding the reference for Geometry, including the detailed layout 
of the building, the main reference is the existing prototype, with most 
building types referring to the DOE Prototype Building Models (Proto
type Building Models | Building Energy Codes Program, 2021). These 
models are widely employed in the development of residential and office 
building archetypes in the literature. In terms of the geometry of com
mercial mixed-use and school prototypes, this work refers to the mixed- 
use prototypes developed by Deng et al. (2022) 

For the Non-Geomerty parameters, this study adheres to the 
mandatory national regulations used for different types of buildings, 
categorizing construction years into three distinct periods. Both resi
dential and non-residential buildings are divided into three groups. The 
categorization of residential buildings follows the standards JGJ 
134–2001 and JGJ 134–2010, which are pre-2001, 2002–2009, and 
post-2010, respectively. Commercial buildings are divided into pre- 
2005, 2005–2015, and post-2015 based on the standards GB 
50189–2005 and GB 50189–2015. For mixed-use buildings, the specific 
parts corresponding to different types are referenced according to the 
respective regulations. Table 5 displays the summarized main 
parameters. 

4. Results 

4.1. Building dataset of Shanghai and validation 

4.1.1. The building dataset of Shanghai 
The 539,119 buildings obtained in Shanghai were classified by 

applying a series of processing steps. Fig. 13 reveals that the area under 
consideration primarily comprises residential, non-residential, and 
mixed-use zones. 

Residential areas constitute approximately 57.40 % of the total 
constructed space, notably with high-rise residential buildings 
comprising 28.45 % of this segment. Non-residential spaces encompass 
around 22.12 % of the total area, with diversified types including 

Fig. 12. Shanghai Prototype modeling with AutoBPS-Param.  
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education facilities (4.63 %), office buildings (3.08 %), hotels (0.46 %), 
restaurants (0.06 %), shopping areas (2.25 %), hospitals (0.70 %), and 
factories (3.16 %). Other categories occupy the remaining 6.78 %. 

Fig. 14 shows the era distribution ranges for each type of building. 

4.1.2. Validation with manual identification building type 
A total of 5872 buildings were selected and manually annotated 

based on satellite images, street view images, and POI data. The anno
tated results were then compared with the proposed method. To 
streamline the manual annotation process, this phase was confined to 
classifying buildings into eight categories: residential, hotel, shopping, 
education, factory, restaurant, hospital, and office. 

In machine learning classification tasks, the confusion matrix and its 
related metrics – Precision, Recall, F1-score, and Support – are key for 
assessing model performance. The confusion matrix elements are True 
Positives (TP) - correct positive predictions; False Positives (FP) - 
incorrect positive predictions; True Negatives (TN) - correct negative 
predictions; and False Negatives (FN) - incorrect negative predictions. 
Precision (Precision = TP / (TP + FP)) measures the accuracy of positive 
predictions. Recall (Recall = TP / (TP + FN)) gauges the model’s ability 
to identify actual positives. F1-score (F1 Score = 2 * (Precision * Recall) 
/ (Precision + Recall)) balances precision and recall. Support indicates 
the occurrence count of each class in the dataset. Together, these metrics 
provide a comprehensive understanding of a classification model’s 
performance. As shown in Table 6, The overall recall rate of the model is 
generally high, all exceeding 0.9. The precision and recall rates are high 
for easily identifiable buildings such as Primary School, Residential, 
Shopping Mall, and Mix-use buildings. However, the precision rate may 
sometimes be less accurate. Particularly noteworthy is the model’s 
classification of Commercial Residential and Hotel as key POIs. How
ever, manual calibration revealed that many hotels are not standalone 
buildings. While this is not apparent in the classification of large hotels, 
the classification of small hotels showed that they frequently coexist 
within residential or office buildings. This ambiguity complicates the 
criteria for manual classification, making it difficult to define such 
buildings. This is why Commercial Residential, Hotel, and Office have 

Table 5 
General EnergyPlus model settings of each prototype building parts.   

Residential part Commercial part 

Parameters Pre- 
2001 

2002–2009 Post- 
2010 

Pre- 
2005 

2006–2014 Post- 
2015 

Exterior wall 
U-value(W/ 
(m2*K)) 

1.96 1 0.8 2 1 0.6 

Roof U-value 
(W/(m2*K)) 

1.66 0.8 0.5 1.5 0.7 0.4 

Window U- 
value (W/ 
(m2*K)) 

6.6 3.2 2.8 6.4 3 2.6 

Window 
SHGC 

0.85 0.48 0.34 0.69 0.43 0.35 

Lighting 
power 
density (W/ 
m2) 

7 7 6 15 11 9 

Equipment 
power 
density (W/ 
m2) 

4.3 4.3 4.3 20 20 15 

Occupancy 
(person/ 
m2)  

0.05  0.125 0.125 0.125 

Cooling/ 
heating 
setpoints ( 
◦C)  

26/18  26/ 
20 

26/20 26/20 

Cooling/ 
heating 
COP 

2.2/1 2.3/1.9 2.9/ 
2.2 

4.2 5.1 5.6  

Fig. 13. The proportion of prototype buildings in Shanghai.  
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lower precision rates. In general, adopting a multimodal data approach 
achieved an accuracy rate of 95 %. 

To further illustrate the differences between the results and actual 
situations of different types of buildings, the following formula is used to 
calculate the difference ratio: 

D =
P − P

1
2 (P + G)

× 100% 

Where P represents the area of building types calculated by the 
presenting method, G represents the area of building types published by 
the Shanghai government (ShangHai Statistical Yearbook 2022, 2022), 
and D represents the difference between them. The results are shown in 
Table 7. 

Table 7 shows that the residential data exhibits the highest accuracy, 
a trend consistent across various areas. Schools rank second in accuracy, 
following residential buildings. The observed variance in hospitals ac
curacy might arise from including small hospitals within the count of 
large hospitals, potentially differing from the government’s statistical 
methods. In the case of hotels and office buildings, most analyzed 
structures in this study fall under the category of mixed-use buildings, 
which are not accounted for in official building statistics, and the precise 
categorization of these buildings is challenging, potentially contributing 
to the observed inaccuracies. Moreover, the data indicates that Jing’an 

and Putuo, known for their greater affluence, exhibit higher accuracy in 
comparison to the Xuhui, Yangpu, and Changning districts. 

4.2. Prototype models of shanghai 

In accordance with the process outlined in Section 2.6, prototype 
buildings specific to Shanghai were developed. The geometric parame
ters of these prototypes are derived from the average values of various 
types of buildings in Shanghai. Certain non-geometric parameters of the 
buildings were also adjusted in line with Shanghai’s mandatory stan
dards. Alterations in these parameters can lead to variations in the EUI of 
the prototype buildings. The prototype buildings used in this study and 
their corresponding average length, width, height, and number of floors 
are presented in Table 8. 

Fig. 15 presents the energy density of 21 prototype buildings across 

Fig. 14. The year distribution of the buildings: Each label corresponds to different eras for Residential (R) and Commercial (C) sectors. For example, the blue label 
represents pre-2001 for Residential buildings and pre-2005 for Commercial buildings. 

Table 6 
Classification model performance metrics table.  

Building type Precision Recall F1-score Support 

Commercial-Residential 0.81 0.97 0.88 158 
Hospital 0.95 0.97 0.79 59 
Hotel 0.33 0.96 0.49 28 
Office 0.53 0.97 0.69 37 
Office-Hotel 0.84 0.94 0.89 79 
OfficeStores 0.85 0.95 0.9 154 
School 1 0.91 0.95 233 
Residential 0.99 0.96 0.98 3926 
Shopping & Retail 0.98 0.95 0.97 230 
Mix-use 0.93 0.95 0.97 968 
Total 0.95 0.96 0.97 5872  

Table 7 
Differences with various types of buildings in each district.  

Building type Jing’an Putuo Xuhui Yangpu Changning 

Residential − 0.04 − 0.08 0.07 − 0.05 0.01 
School − 0.40 0.10 − 0.24 − 0.11 − 0.35 
Office − 0.02 − 0.19 0.25 0.18 − 0.83 
Shopping & Retail − 0.03 0.06 − 0.33 − 0.45 − 0.67 
Hospital 0.47 0.21 0.43 0.07 0.48 
Hotel − 0.01 − 0.66 − 0.38 − 1.02 − 0.40  

Table 8 
Prototype attributes of Shanghai.  

Prototype Length 
(m) 

Width 
(m) 

Height 
(m) 

Floor Building 
Area (m2) 

Low-Rise 
Residential 

22.39 11.22 5.89 2 503 

Mid-Rise 
Residential 

36.54 13.81 16.14 5 2018 

High-Rise 
Residential 

46.91 16.05 42.53 14 7530 

Primary/Secondary 
School 

38.17 18.58 12.77 4 2127 

Small Office 39.93 19.24 16.09 5 5379 
Large Office 70.84 40.52 64.39 21 57,411 
Small Hotel 64.25 27.18 19.46 6 6985 
Large Hotel 81.88 44.80 42.44 14 36,686 
Restaurant 57.40 26.52 17.24 6 1522 
Retail stand alone 42.30 18.16 12.07 3 863 
Shopping Mall 55.45 24.29 12.15 4 26,620 
Hospital 36.04 17.14 13.70 4 1853 
Low-rise 

Residential- 
Shopping 

29.21 11.07 5.90 2 646 

Mid-rise 
Residential- 
Shopping 

44.80 19.21 16.86 6 4302 

High-rise 
Residential- 
Shopping 

54.63 28.29 58.81 20 15,456 

Residential- 
Restaurant 

71.15 26.40 15.16 5 13,148 

Residential-Hotel 58.70 20.01 22.05 7 8221 
Office-Hotel 53.62 29.46 47.56 16 18,954 
Office-Shopping 47.12 22.96 14.65 5 10,818 
Shopping- 

Restaurant 
39.58 17.28 11.64 4 29,621 

Shopping-Hotel 37.88 19.10 16.62 6 2894  
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three distinct eras. To ensure consistency in the figure’s representation, 
the Gas EUI is converted into kWh/m2. The first row focuses on resi
dential buildings, predominantly using gas for domestic hot water and 
cooking. Lower-level residential buildings, particularly those with attics, 
exhibit higher average gas consumption per unit area. Energy con
sumption is significantly higher in buildings that combine residential 
and hotel functions, a typical occurrence in Shanghai, in comparison to 
purely residential structures. The second and third rows primarily focus 
on commercial buildings. Hospitals exhibit the highest energy con
sumption, with a total EUI ranging from 494 kWh/m2 to 688 kWh/m2. 
Office buildings, characterized by a higher rate of electrification and 
lower gas usage, show an overall energy consumption ranging from 97 
kWh/m2 to 164 kWh/m2. Large office buildings employ centralized 
heating, resulting in increased gas usage and an overall EUI range of 115 
kWh/m2 to 152 kWh/m2. Additionally, most office buildings incorpo
rate retail stores serving office workers, resulting in increased energy 
consumption compared to buildings exclusively used for office purposes, 
with a total consumption range of 162 kWh/m2 to 248 kWh/m2. Res
taurants experience considerable gas usage, primarily for cooking pur
poses. The mainstream types of contemporary commercial buildings in 
Shanghai are mixed-use establishments integrating both restaurants and 
shopping facilities. These buildings exhibit relatively higher energy 
consumption, ranging from 173 kWh/m2 to 336 kWh/m2, in contrast to 

strictly shopping malls, with energy consumption ranging between 107 
kWh/m2 and 225 kWh/m2. Tourism hotels, shopping malls, and 
healthcare buildings entail increased demands for indoor comfort and 
accommodate larger population densities. The continuous operation of 
heating and cooling systems throughout the year leads to an overall 
increase in energy consumption. Conversely, schools feature the lowest 
overall energy consumption due to the absence of the peak energy- 
consuming cooling and heating seasons during the summer break. 

Fig. 16 compares the results of prototype buildings, measured data 
from the papers, and government data. It is worth noting that some of 
the composite buildings still lack relevant reference literature to provide 
measurement ranges. It can be observed that the majority of prototype 
buildings fall within the reference range. 

However, the EUIs for certain building periods fell outside the 
measured values, which can be attributed to three main reasons. Firstly, 
the data sources for these measurements did not cover the three eras 
outlined in this study, resulting in discrepancies. Secondly, the 
complexity of the buildings in question could be a factor, particularly if 
the prototype buildings used in this study were not fully adapted to 
Shanghai’s context. Future research should aim to develop prototypes 
that are more representative of Shanghai or reassess the representa
tiveness of the measured buildings. Specifically, for hospitals built 
before 2005, their EUIs substantially exceeded the measurement range, 

Fig. 15. The prototype buildings and their respective electrical and gas consumption densities, with gas density units converted to kWh/m2.  
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likely because most Shanghai hospitals were constructed post-2005 and 
have been updated to conform to newer standards. For shopping malls, 
the primary issue seems to stem from the second factor, leading to 
modeling results that are lower than the actual measurements. This may 
be due to the use of prototype buildings based on American standards by 
the DOE, which do not accurately reflect Shanghai’s unique commercial 

environment. The discrepancy in EUIs between large and small hotels is 
primarily related to the first factor, with a greater emphasis on buildings 
established earlier. In mixed-use buildings, the majority of results were 
consistent with measurements, with the exception of Residential- 
Restaurant buildings, where lower results were observed, largely 
attributed to the buildings’ complexity. On the other hand, when 

Fig. 16. Comparison between Simulation Results and References.  

Fig. 17. Detailed building energy consumption in Shanghai.  
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comparing the results of Shopping-Restaurant and Shopping Mall, it can 
be seen that Shopping-Restaurant aligns well with the middle region of 
the government measurement range. This indicates that in Shanghai, 
shopping malls are more akin to complexes like Shopping-Restaurant. 

4.3. UBEM for Shanghai city 

After completing the modeling of various prototype buildings in 
Shanghai, the energy consumption of each building in Shanghai was 
calculated based on the EUI, era, type, and total area of the buildings. 
Regarding the details of individual buildings, as shown in Fig. 17, in 
relatively complex commercial buildings, the method used in compari
son to the untreated method performs well in multi-component build
ings. It does not only cover the main or partial components but instead 
provides comprehensive coverage. In residential buildings, this method 
is effective in identifying mixed-use buildings, thereby further 
improving the granularity of simulation modeling in residential build
ings. However, some buildings, such as factories and warehouses, still 
have unaccounted energy consumption. In a few cases, certain com
mercial buildings cannot be categorized, or their energy consumption 
cannot be determined. For these buildings, the method used is to assign 
their EUI based on the average of other similar commercial buildings. 
There is also a small number of residential buildings (less than 5 %) 
where the type couldn’t be accurately determined. 

To better present the energy consumption distribution across 
Shanghai, this study has divided the city into discrete grids with a unit 
size of 2 square kilometers. The energy consumption distribution in 
Shanghai’s buildings is illustrated in Fig. 18. 

Due to the difficulty in obtaining actual energy consumption from 
each building, a comparison can only be made with the data provided by 
the government. The simulation results indicate that the 539,119 
buildings in Shanghai consumed a total of 82,471 GWh of electricity and 
36,374 GWh of gas. The electricity consumption differs from the gov
ernment’s published value of 78,079 GWh by approximately 5 %. A 
relevant review (Reinhart & Cerezo Davila, 2016) indicates that this 
level of difference falls within a relatively good range for modeling on 
such a large scale. 

Table 9 summarizes the total energy consumption of various types of 
buildings in Shanghai. It is evident that despite the lower energy con
sumption of residential buildings, their large total area results in the 
highest overall energy consumption. The second period, spanning from 
2002 to 2009 (Residential) and 2006 to 2014 (Commercial), coincided 
with a period of rapid development in Shanghai. During this time, a 
significant number of buildings, particularly commercial ones, were 

constructed. Additionally, the proportion of mixed-use buildings should 
not be underestimated. These early constructions, due to the imple
mentation of less rigorous efficiency standards, have substantial po
tential for optimization in both their maintenance structures and energy- 
using equipment. 

5. Discussion 

5.1. Data quality and UBEM accuracy 

The quality of data sources significantly affects the accuracy of 
UBEM, as noted by Nouvel et al. (2017). Errors in these sources can 
propagate to UBEM results through a process known as ’forward 
transmission’. In this study, we examine the impact of different open 

Fig. 18. The block distribution of annual building electricity use and gas use.  

Table 9 
Electricity consumption of different building types in Shanghai (in GWh).  

Building type First 
period 

Second 
period 

Third 
period 

Total 
electricity 

High-Rise Residential 8207.52 6501.31 4248.06 18,956.89 
High-rise 

Residential- 
Shopping 

97.42 133.18 105.76 336.36 

Hospital 963.25 2171.77 764.29 3899.31 
Large Hotel 89.78 275.10 52.43 417.31 
Large Office 1022.62 2798.85 973.98 4795.45 
Low-Rise Residential 988.71 1333.45 779.06 3101.22 
Low-rise Residential- 

Shopping 
10.82 3.54 1.98 16.35 

Mid-Rise Residential 3687.33 6347.93 2519.02 12,554.27 
Mid-rise Residential- 

Shopping 
22.62 29.60 9.45 61.68 

Office-Hotel 14.89 74.31 40.74 129.93 
Office-Shopping 5334.37 11,750.09 3236.67 20,321.12 
Primary/Secondary 

School 
482.85 936.25 351.45 1770.56 

Residential-Hotel 695.92 1375.76 590.15 2661.83 
Residential- 

Restaurant 
2.28 23.99 6.12 32.39 

Restaurant 23.95 123.48 30.52 177.95 
Retail stand alone 44.12 267.41 53.95 365.49 
Shopping Mall 769.86 1474.40 428.47 2672.73 
Shopping-Hotel 400.14 1001.28 380.47 1781.89 
Shopping-Restaurant 974.04 4770.40 1504.96 7249.40 
Small Hotel 45.17 141.30 46.63 233.11 
Small Office 248.61 547.35 139.80 935.75 
Total Electricity 

(GWh) 
24,126.26 42,080.75 16,263.96 82,470.97  
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data sources on the accuracy of UBEM, focusing on three key aspects: 
completeness, accuracy, and timeliness. 

Beginning with completeness, which primarily pertains to GIS- 
related issues, including POIs, AOIs, and building footprints, the 
research utilized OpenStreetMap. Despite its widespread use, its quality 
in China and developing regions is inadequate for a comprehensive 
UBEM due to missing building height/floor data and low coverage. 

Due to the absence of real-world benchmarks, the accuracy of open 
data is challenging to validate accurately, especially at larger scales. The 
lack of validated data is a common issue in UBEM research, extensively 
discussed in numerous related papers (Hong et al., 2020a; Oraiopoulos 
& Howard, 2022; Reinhart & Cerezo Davila, 2016). Obtaining 
large-scale building energy consumption data is a widespread challenge 
in this domain. Oraiopoulos & Howard (2022) surveyed 535 UBEM 
papers, revealing that only 47 studies confirmed the potential accuracy 
of UBEMs, and these studies primarily emanated from regions with 
established building databases, such as Singapore and some cities in the 
United States. Open data, mainly from crowdsourcing, suffers from 
geographical accuracy inconsistencies, making manual area calibration 
unreliable for overall accuracy. Baidu and Amap, key for UBEM, differ in 
their building height data, using floor count and actual height. Prior 
research, typically using one source and estimating the other with a 
standard 3 m floor height, faces conflicts between sources as shown in 
Section 2.3.2, risking significant discrepancies and errors in UBEM re
sults. This study leverages Amap and Baidu POIs for real-time tracking of 
building renovations, alongside ultra-high-resolution satellite imagery 
for temporal analysis. It highlights the challenge of inconsistent image 
capture times across cities, affecting building age accuracy and intro
ducing biases. Recent imagery integration by providers mitigates this, 
though historical data still presents discrepancies. 

5.2. Scalability of UBEM modeling with open data 

UBEM has increasingly matured, with tools such as CityBES, 
AutoBPS, and UBEM.io capable of swiftly generating UBEMs based on 
existing data. Currently, the primary limitations of UBEM applications 
stem from data sourcing and processing. In existing research, these 
processes are often manually executed by experienced GIS experts, thus 
being perceived as time-consuming, labor-intensive, and costly (Davila 
et al., 2016). Therefore, this aspect is also widely recognized as one of 
the significant challenges in UBEM (Hong et al., 2020a). Discussions on 
data source processing are prevalent in other studies as well. Remmen 
et al. (2018)emphasize the importance of open data in urban energy 
modeling, particularly in dynamic simulations and large-scale urban 
scenarios, through their comparative analysis of data sources. This study 
focuses on simplifying and optimizing a universal methodology through 
the fusion of multi-source data and artificial intelligence techniques, 
leveraging accessible open GIS information and satellite imagery to 
categorize buildings by type and era. By employing a multi-source data 
fusion approach, this paper significantly enhances the robustness, reli
ability, coverage, and accuracy of the commonly used method. The data 
sources utilized in this study are standard in the remote sensing domain 
and are readily accessible as open data. By combining existing UBEM 
modeling tools, the complexity of developing UBEM can be significantly 
reduced, thereby enhancing the reliability of establishing UBEMs using 
open data. Furthermore, the modeling software AutoBPS utilized in this 
study fully encompasses prototype buildings and related standards from 
the United States, enabling the method to be automated and extended to 
any region within the country. 

5.3. Limitations and future work 

This research encounters several limitations in its aim to expand to 
more cities: 

1) Calibration of floor counts is based on a simple metric of the differ
ence between footprint area and total built area. Implementing more 
sophisticated methods would enhance accuracy.  

2) This study introduces various methods for classifying building types, 
but validation is limited, not accounting for geographic variations.  

3) The study mainly uses a prototypical building aggregation approach, 
which, while cost-effective, overlooks environmental interactions.  

4) Due to the lack of detailed final energy consumption data in the 
publicly available information, this study was unable to conduct an 
accurate verification against actual results. 

Given the diverse range of building types in urban contexts, the 
building models used in this study might not cover every possible sce
nario, including facilities like factories and laboratories, known for their 
considerable variability in energy use.Several aspects require further 
investigation in research:  

1) Enhancing accuracy through expanded GIS methods, such as satellite 
imagery for building type deduction and street views for identifica
tion.Refining mixed-use building models by considering various 
mixed-use ratios.Further discussion on the thermal exchange be
tween buildings is necessary. 

In summary, open data fusion is a practical approach for developing 
reliable urban building energy models, with tailoring to specific cities 
and integrating more sources enhancing effectiveness. Its limitations 
suggest using advanced GIS, computer vision, and data mining for 
greater accuracy, and including mixed-use buildings and occupant fac
tors improves simulations. This study offers a framework for open data 
in city energy planning and sustainability. 

6. Conclusions 

In conclusion, this study presents a methodology to developing an 
urban building energy model for Shanghai using multi-source open data. 
Through integrating and cross-validating data from various sources, 
including Baidu Map, Amap, Google Earth, AI Earth, GHSL, Anjuke, and 
Lianjia, this research significantly expanded the coverage and improved 
the reliability of open data for urban building modeling. 

In total, 609,763 building footprints and 539,119 buildings in 
Shanghai were collected, covering an area of 1567,921,014 m2. By 
employing spatial analysis, clustering, supervised learning, and unsu
pervised learning, the collected buildings were categorized into 21 
prototypes, with over 93.22 % of buildings successfully classified. The 
overall distribution shows residential buildings account for 62.4 %, of
fice buildings account for 11.3 %, hospitals account for 2.5 %, and the 
remaining 23.8 % are other types. Compared to manual sampling, the 
classification accuracy reached 95 %. 

Furthermore, historical satellite imagery and community boundary 
data were combined to determine the construction year for over 95 % of 
buildings. Prototype models were then developed in AutoBPS for 63 
main building types using mandatory local standards, literature refer
ences, and OpenStudio standards. These models represented the char
acteristics of real buildings in Shanghai. EnergyPlus simulations of these 
prototype buildings yielded energy use intensity values that aligned 
with ranges reported in government data. 

By integrating the classified buildings with AutoBPS-Param, a 
comprehensive bottom-up urban building energy model was established 
for Shanghai. The results validate the reliability of the multi-source data 
fusion approach for developing UBEM. This study provides an effective 
workflow and valuable insights for leveraging open data to advance city- 
scale energy modeling and urban sustainability. 
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