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Abstract: There exists a notable research gap concerning the application of ice storage systems in
shopping mall settings at the urban scale. The characteristics of large pedestrian flow, high energy
consumption, and high peak loads in shopping malls make their advantages in energy conservation.
This study researches sustainable cooling solutions by undertaking an economic analysis of the ice
storage systems within shopping malls across 11 distinct cities, each system operating under varied
electricity pricing frameworks. The methodology begins with creating baseline mall models using
AutoBPS and refining them with OpenStudio. Before starting to adjust the model, measured data were
used to verify the accuracy of the baseline model, the coefficient of variation of the root mean square
error (CVRMSE) and normalized mean bias error (NMBE) metrics were calculated for the model
energy consumption, with CVRMSE values of 8.6% and NMBE values of 1.57% for the electricity
consumption, while the metrics for the gas consumption were 12.9% and 1.24%, respectively. The
study extends its inquiry to encompass comprehensive economic evaluations based on the unique
electricity pricing of each city. This rigorous assessment discerns the relationship between capacity,
operational strategies, and economic performance. Particularly striking are the so-called peak-shaving
and valley-filling effects verified in regions characterized by lower latitudes and substantial cooling
loads. The interaction between ice storage capacity and operational schedules significantly influences
both economic viability and cooling efficiency. Based on the temporal dynamics of time-of-use (TOU)
power pricing, a finely calibrated operational schedule for the ice storage system is proposed. This
operational strategy entails charging during periods of reduced electricity pricing to undertake
cooling loads during peak electricity pricing intervals, culminating in substantial reductions in
electricity charges of buildings. Moreover, the strategic reallocation of energy, characterized by a
reduced chiller capacity and a corresponding elevation in ice storage system capacity, augments
cooling efficiency and diminishes cooling-related electricity expenses. This study offers valuable
insights for optimizing and deploying ice storage systems in diverse climatic regions, particularly
for shopping malls. As a guiding reference, this paper provides stakeholders with a framework
to reasonably apply and adjust ice storage systems, ushering in an era of energy-efficient and
environmentally conscious cooling solutions tailored to shopping mall environments.

Keywords: ice storage system; shopping malls; system operation; scheme optimization; peak shaving;
building simulation

1. Introduction

As society evolves and technology advances, the global energy demand continues
to surge, increasing an emission by more than 5% in CO, emissions. Carbon emissions
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of the building sector account for 1/3 of total carbon emissions. According to the United
Nations Environment Program, the building industry should endeavor to reduce energy
consumption and greenhouse gas emissions in both developing and developed nations [1].
In 2020, China aimed to reach the carbon peaking and carbon neutrality goals. By 2020,
China’s operational carbon emissions caused by the building sector maintained an upward
trend [2]. In the present context, renewable energy systems are swiftly being used to miti-
gate the increasingly serious global environmental issue of CO, emissions [3]. However, the
temporal and spatial instability of clean energy sources often results in the manifestation
of the so-called “duck curve” pattern in electricity demand profiles [4]. With increasing
generation capacity, this duck curve is transitioning into a canyon curve. This phenomenon
has caused concern among many scholars. Energy storage systems can accumulate electric-
ity during low-demand periods and discharge it during peak periods, thus alleviating the
pressure on the power grid [5]. Their significance in peak load management and off-peak
supply augmentation is progressively becoming more prominent, and their study and
development are expanding.

Shopping malls are taken in to account for a considerable proportion of total energy
consumption [6]. The energy consumption of shopping malls is mainly composed of air
conditioning and lighting energy consumption [7]. Furthermore, owing to their substan-
tial pedestrian flow, shopping malls exhibit higher electricity consumption levels during
peak hours compared to conventional public buildings. The large discrepancy between
peak-to-valley loads illustrates the substantial undeveloped energy-saving potential that
energy storage systems can offer when deployed within shopping malls. Yayla et al. [8]
developed an artificial intelligence (AI)-based occupant-centric HVAC control mechanism
for cooling that continually improves its knowledge to increase energy efficiency in a
multi-zone commercial building. Although most shopping malls have adopted intelligent
equipment management systems to control refrigeration equipment, allowing them to op-
erate with different strategies based on various environmental parameters and optimizing
the use of ice storage systems remains challenging when considering aspects of peak load
management and operational strategies across multiple climate zones.

There is extensive research on energy consumption prediction, analysis, and optimiza-
tion management for shopping malls. Pompei et al. [9] investigated the optimizations of
Heating, Ventilation, and Air Conditioning (HVAC) systems for achieving thermal comfort
and indoor air quality in shopping malls. Jing et al. [10] proposed an energy-saving diag-
nosis model for shopping malls based on an improved PSO-SVM neural network, which
not only found out the unreasonable situations in the operation of the air-conditioning sys-
tem but also provided a reference for building energy-saving management and operation.
Meanwhile, Zhang et al. [11] took a commercial building in Xi’an as an example, studied
the hourly load data of its ice storage cooling system, and used modeling techniques to
predict the load of the building.

Thermal energy storage systems find primary application in building air-conditioning
systems. As a widely used thermal energy storage form, ice storage system mitigates peak
load pressure on the power grid and diminishes the cooling capacity of air-conditioning
systems [12]. Compared to chilled water systems and sensible heat storage mechanisms,
Chao et al. [13] pointed out that the ice storage system exhibited superior thermal energy
density due to its substantial latent heat. This feature indicates that the ice storage system
can provide a more efficient and stable energy transmission [14]. Kang et al. [15] found
that in buildings employing central air conditioning systems, the integration of ice storage
systems with differential peak-to-valley electricity prices can yield cost-saving advantages.

Currently, research on the economic viability of ice storage systems is primarily carried
out along the following two dimensions: initial investment and operational expenses. The
selection of distinct energy storage tanks [16] and heat exchangers will have a substantial
influence on the initial investment. Xu et al. [17] conducted theoretical and experimental
research on the ice storage process of coil ice storage air conditioning technology. Heine
et al. [18] proposed a recently developed OpenStudio measure for rapid analysis of unitary
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thermal storage systems (UTSS). By this metric, the authors evaluated the implementa-
tion of UTSS in newly constructed and retrofitted retail buildings equipped with both
packaged single-zone air conditioners (PSZAC) and packaged variable air volume (PVAV)
systems. Regarding operational expenses, aside from the heat exchanger’s intrinsic physi-
cal structure, factors include heat transfer efficiency, climate zone, control strategies, and
operational schedules. Jannesari et al. [19] conducted a comparative analysis of two heat
transfer enhancement methods, specifically, the utilization of thin rings and annular fins
around coils. Meng et al. [20] developed an optimization approach for ice storage air
conditioning, aiming to minimize both the power purchase cost from the grid and the
operational cost of the ice storage air conditioning system. Zou et al. [21] presented a global
optimal control strategy to improve the overall energy performance of the system. Control
strategies can significantly impact the economic viability of ice storage systems. Gustavo
et al. [22] tackled the issue of closed-loop scheduling for a large-scale chiller plant with a
thermal energy storage (TES) tank under a d-ahead (DA) electricity price program. In the
existing studies, prominent variables for control strategies include system composition,
the proportion of chilled water and ice storage systems, chiller capacity, and operational
timetables [23]. The prevalent control strategies include chilled water priority mode, ice
melting priority mode, and optimized control mode [24,25]. Cui et al. [26] proposed a
model-based optimization design methodology to maximize the capacity of active thermal
energy storage while minimizing the system’s life cycle cost. Allan et al. [27] elaborated on
the utilization of piece-wise linear regression and non-linear optimization techniques to
ascertain the heat transfer properties of two ice thermal stores with different volumes. Yan
etal. [28] introduced a hybrid storage system that fused a seasonal ice storage system reliant
on heat pipes with a chilled water storage system, optimizing the operational approach of
the configuration. Sanaye et al. [29] introduced two operational modes, namely full opera-
tion and partial operation, for ice storage systems, and subsequently compared the costs
associated with these modes. Hoseini Rahdar et al. [30] explored peak-to-valley electricity
pricing modes in storage systems, assessing their impacts on energy, economics, and the
environment. By adjusting ice melting threshold conditions, optimizing the scheduling of
the chilled water system [31], and improving the design of the water circulation system [32]
it is possible to achieve the most economically efficient optimal operational objectives.
Erdemir et al. [33] conducted a thermodynamic and economic analysis of an integrated
ice storage system within the air conditioning system of a hypermarket located in Ankara,
Turkey. Gholamibozanjani et al. [34] explored the influence of employing a phase change
storage system over a brief span (7 days) to enhance cost savings in electricity and heating
costs within building models simulated in EnergyPlus, by adopting a model predictive
control methodology.

Numerous studies have refined system operation protocols to improve operational
strategies and enhance optimization outcomes by creating models, adjusting parameters,
and conducting simulations. These studies have also introduced a variety of optimization
algorithms based on these models. Tang et al. [35] proposed an optimization framework
that integrates a data-driven cooling load prediction model, system physical model, and
advanced optimization algorithm and applied it to a district cooling system (DCS) coupled
with an ice-based TES in Beijing, China. Hui Cao et al. [36] formulated a similar day
algorithm to calibrate and reduce training sample dimensions. J.A. Candanedo et al. [37]
proposed a model-based predictive control algorithm designed for building cooling systems
that operate under time-varying electricity price profiles. Karl Heine et al. [38] introduced
a simulation-optimization workflow that utilized building energy modeling software and
mixed-integer linear programming to develop designs and schedules for an integrated
refrigeration and thermal storage technology. Xu Song et al. [39] explored a composite ice
storage system that combines chilled water and ice storage components. They developed a
mathematical model to determine refrigeration capacity and devise daily operational costs
for the integrated system. Na Luo et al. [40] gained a comprehensive understanding of
the operations of ice storage systems in shopping malls through data-driven analysis and
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modeling. They utilized on-site data collected from installed instruments and sensors to
calculate system performance. Beghi et al. [41] developed a simulation environment using
Matlab/Simulink [42], which integrated continuous and discrete dynamics and accounted
for both latent and sensible heat considerations.

Moreover, electricity charging standards in diverse regions directly impact the eco-
nomic efficiency of ice storage systems [43]. The electricity pricing policies vary across
countries and regions with different levels of development. Factors such as interdependen-
cies among different countries and regions, changes in local energy structures [44], and
variations in energy demand [45] influence electricity prices. Currently, in various regions
of China, time-of-use electricity prices are implemented and further categorized based on
the type and scale of electricity consumers.

However, previous studies investigating the economic efficiency viability of ice storage
systems have often concentrated on isolated influencing factors, yielding limited insight into
the comprehensive and systematic assessment of the synthetic effect of various influencing
factors. Additionally, while research on the peak load-shedding capacity of ice storage
systems, has primarily centered on individual buildings or specific climate zones, it has
relatively underexplored their potential applications of ice storage systems in commercial
buildings across diverse climate zones. The lack of rapid urban-scale building modeling
tools hinders and restricts the research and discussion on the application effectiveness
of ice storage systems in multiple climatic zones. Additionally, the existing developed
algorithms and models exhibit limited applicability, failing to support the simulation
and computation of multiple urban buildings. Using the baseline models generated by
the urban building energy modeling tool named AutoBPS, this study aims to bridge
these gaps by considering peak-to-valley electricity pricing, the ratio of chiller capacity
(RCC), and system operational schedules to explore the peak shaving capability of ice
storage systems in shopping malls situated in different climate regions. Furthermore, it
seeks to uncover the relationships and discrepancies among these factors. Simultaneously,
this study will undertake a longitudinal analysis spanning various regions within China,
enhancing our understanding of the interconnections among these factors, and providing
valuable guidance for the implementation of ice storage cooling systems in large commercial
buildings. The study’s emphasis on peak load management aligns with the core principles
of sustainability, as it seeks to optimize energy resources, reduce electricity costs, and
minimize its environmental footprint. By shedding light on the potential applications of
ice storage systems and their role in peak shaving, this paper contributes valuable insights
to the pursuit of sustainable building practices and more environmentally responsible
solutions in the realm of energy management and cooling technologies.

The remaining parts of the paper proceed as follows. In Section 2, we provide a detailed
introduction to the research methodology of this paper, constructing and simulating the
model. In Section 3, we organize and analyze the simulation results of the model, compare
the varying effects of ice storage systems in different cities, and conduct an economic
analysis. In Sections 4 and 5, we discuss and summarized the significance and limitations
of this work.

2. Methodology

The research framework, illustrated in Figure 1, outlines the workflow for the es-
tablishment and simulation of an ice storage model. In this study, shopping malls were
chosen as representative examples of large public buildings to assess the energy perfor-
mance of ice storage systems. The initial step was the integration of the ice storage system
into a baseline model which included chillers as the cooling source. The baseline models
were generated using AutoBPS, a simulation tool that can co-simulate with EnergyPlus
(https:/ /energyplus.net/licensing (accessed on 1 August 2023)) for urban building energy
modeling [46]. Subsequently, the operational strategy was adjusted by modifying the
RCC and running schedule according to variational weather conditions. The ice storage
system model was established, and its parameters were optimized using OpenStudio
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(https:/ /openstudio.net/ (accessed on 1 August 2023)) based on the input data file (IDF)
generated in the previous step. Finally, the energy performance of incorporating the ice
storage system was analyzed.

Epw files of 11 cities
City building dataset

Fem——————————————————
1
! Building height: 4.7m l AutoBPS
. . [ p UL !
Buildin c: shopping mall 1 1 Fg= !
et ppine - HEE - Baseline model i Change the ratio
Building area: 209,916m? ! g i of chiller capacity

System: Chiller + VAV - Add ice } '

Themilzbie: Stpes Qﬂ storage system Modcls with dlffcr.cnl
........................ . ice storage capacity

Occupancy schedules:

________________________ H Change the

l running schedule
et ! '
i (a EnergyPlus simulation | Nodels with different

_________________________ :
running schedules

weekend/workday

Figure 1. Workflow of establishment and simulation of an ice storage model.

2.1. Baseline Model of the Shopping Mall

Figure 2 presents the building geometry of the baseline model illustrating the baseline
shopping mall model, which serves as a prototype and is generated using AutoBPS.

Figure 2. Building geometry of the baseline model.

The parameters of the baseline model are modified through calibration and modeling
based on empirical data collected from a specific commercial building in Changsha [47].
This procedure is supported by collecting monthly actual energy consumption data of the
commercial buildings, along with basic building parameters like the building envelope
structure. Subsequently, this data is input into the urban building modeling tool, AutoBPS-
Param, to construct the baseline model of the shopping mall, and Chen et al. used Monte
Carlo sampling to calibrate the model results. The range of parameters first refers to the
study of Chen et al. [48] and the Chinese national building design standards, including
the “GB50189-2005 Energy Efficiency Design Standards for Public Buildings” [49] and
“GB50189-2015 Energy Efficiency Design Standards for Public Buildings” [50]. The final
models taken into consideration all met the criteria of normalized mean bias error (NMBE)
not exceeding 5% and coefficient of variation of the root mean square error (CVRMSE) not
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exceeding 15%. These series of comparisons and calibration processes affirm the correctness
and effectiveness of our model. The fundamental model acquired through the above-
mentioned approach serves as the baseline model for shopping malls in diverse climatic
regions nationwide. By integrating weather files of diverse regions into the simulation, we
can generate corresponding shopping mall models belonging to specific climate zones.

The building is divided into two underground floors and five above-ground floors,
each with a height of 4.7 m. The total area of the building amounts to 209,916 m?. The
heat transfer coefficient of the external wall and roof is 0.45 W/(m?-K) and 0.4 W/(m?-K),
respectively, and the heat transfer coefficient of the outer window is 2.193 W/(m?K).
The highest cooling load index per unit building area above ground is 47.63 W /m?. The
parameter settings of the baseline model are shown in Table 1.

Table 1. Parameter settings of the baseline model.

Space T Occupant per Area Lighting Power Density Equipment Power Density Area Ratio
pace lype Person/m? W/m? W/m? %
Cinema 0.199 10.0 13.0 29
Clothing 0.125 10.0 13.0 27.2
Corrido 0.067 25 1.0 22.3
Entertainment 0.199 13.5 5.0 3.9
Restaurant 0.099 9.0 13.0 13.6
Office 0.067 9.0 20.0 8.7
Parking lot 0.049 2.0 1.0 16.5
Supermarket 0.099 11.0 13.0 49
In the initial design of the building’s air conditioning system, the ventilation system
employs variable air volume air conditioning terminals, with chillers serving as the cooling
source. When the refrigeration system of the baseline model operates under rated condi-
tions, the reference values for fluid temperatures are set as follows: the entering condenser
fluid temperature is set at 35 °C as a reference value, and the supply of chilled water is set
at 7 °C. The cooling capacity is provided by two chillers concurrently. The capacities of the
chillers are set at 1140 tons. The parameter settings of the baseline model system are shown
in Table 2. The main functional areas included in the baseline model are restaurants, shops,
and supermarkets, which are the primary sources of energy consumption. In the baseline
model, their lighting and occupancy schedules are shown in Figure 3.
Table 2. Parameter settings of major components of the baseline model.
Components Heat Transfer Coefficient Cooling Load Index Number
P (W/(m?-K)) (W/m?)
External wall 0.45
Building Roof 0.4
envelope External window 2.193
Per unit building area above ground 47.63
Chillers 2
Primary chilled water pump 1
Pumps Second chilled water pump 1
Condenser water pump 1
Others Cooling tower 1
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Fraction Fraction
1 1
0.8 0.8
0.6 0.6
04 04
0.2 02
0 0
0:00:00 8:00:00 16:00:00 0:00:00 0:00:00 8:00:00 16:00:00 0:00:00
(a) Lighting schedule-Restaurant-weekend (b) Lighting schedule-Restaurant-workday
Fraction Fraction Fraction
1 1
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
0.2 0.2 0.2
0 0 0
0:00:00 8:00:00 16:00:00 0:00:00 0:00:00 8:00:00 16:00:00 0:00:00 0:00:00 8:00:00 16:00:00 0:00:00
() Lighting schedule-Shop (d) Occupation schedule-Shop (e) Supermarket activity (W/person)

Figure 3. Schedule settings of the baseline model. (The blue line indicates the change in the personnel
occupancy rate).

2.2. Establishment of Ice Storage Model

OpenStudio is used to add an ice storage system to the baseline model of the shopping
mall. The ice storage models are generated and simulated in EnergyPlus to obtain data such
as cooling capacity conversion, cooling power consumption, and unit power consumption
of the shopping mall after the integration of the ice storage system. The operating parame-
ters of the ice storage system are modified to make it work under different conditions, and
the energy-saving effects of the ice storage system under different operating schemes are
compared. This paper mainly investigates the service efficiency of the ice storage system
under different parameter settings. The decision variables and available options are shown
in Table 3.

Table 3. Variable parameters and available options.

Decision Variables Option
RCC 0.35/0.40/0.50
Running schedule Ice-priority /TOU schedule

For the modified parameters, the RCC and the running schedule are mainly considered.
The change in RCC is primarily achieved by adjusting the variable parameter ‘sizing factor’
of the cooling system’s chiller in OpenStudio. The modification of the running schedule
is mainly achieved by altering the temperature variation pattern at the inlet control node
of the ice storage tank. By adjusting these two variables, RCC and running schedule, we
can obtain ice storage cooling systems with different ice storage capacities and different
operating schedules. Under the influence of peak-to-valley electricity prices, this has an
impact on the energy consumption of the building’s cooling system.

2.2.1. Addition of Ice Storage System

Based on the baseline model of the shopping mall. OpenStudio is used to add an ice
storage system to the baseline model. We take a commercial building located in southern
China as an example to study the impact of the ice storage system on energy consumption.
The ice storage medium in the loop is set to ethylene glycol with a concentration of 25%,
and the temperature of the ethylene glycol is controlled. The lower limit of the temperature
range is reduced from 0 °C to —5 °C, the initial cooling capacity of the ice tank is set to
250 GJ, and the outlet temperature is set to 7 °C.
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The schematic diagram of the ice storage system added by OpenStudio is illustrated
in Figure 4. The cooling system comprises two chillers and two strategically positioned ice
tanks within separate branches. At the beginning of the cooling operation, chiller 1 and
ice tank 1 are responsible for handling the primary cooling load. If there is insufficient
cooling capacity, chiller 2 and ice tank 2, situated in another separate branch, are activated
to supplement the cooling demand.

Valve 1

b

ol Chiller 1 })—-ol Ice tank 1 F

Valve 2 —
ol Chiller 2 L)—-(* Ice tank 2 };
Chilled
water pump Chilled water loop
S e
Air-handling unit t
Return air Supply air

Figure 4. Schematic Diagram of Ice Storage System.

2.2.2. Ice Storage Models for Different Cities: Change the Weather File of the Model

For the 11 cities studied in this paper, cooling loads are different due to their different
climatic conditions. Cities with larger cooling loads require longer operating hours and
larger capacity for ice storage systems. Still, at the same time, the power consumption of the
ice storage system also increases. By changing the weather file of the model in OpenStudio,
it is possible to study the energy-saving effect of ice storage systems in cities in different
climate zones.

For the 11 cities studied in this article, their climate characteristics are different. In the
case of climate characteristics in various regions, they can be represented using Cooling
Degree Days (CDD26) and Heating Degree Days (HDD18) as shown in Table 4.

Table 4. Climate Zone Characteristics.

Climate Zone Names HDD18 CDD26
Severe cold regions >3800 /
Cold region 2000~3800 >0
Hot summer and cold winter region 1000~2000 >90
Hot Summer and Warm Winter Region 0~1000 >90
Temperate Region 0~1000 0~90

The 11 cities chosen for this study belong to 11 distinct climate zones, 1A, 1B, 1C, and
1D are categorized as severe cold regions, 2A and 2B fall within the cold region, 3A, 3B,
and 3C pertain to the hot-summer and cold-winter region. In contrast, 4B and 5A belong
to the hot-summer, warm-winter, and temperate regions. Detailed information about the
regions where these 11 cities are located is presented in Table 5.
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Table 5. Climatic zone characteristics of 11 cities.
. Average Outdoor
City Thermal Climate Zone Ten:gperature Longitude Latitude @ HDDI18 CDD26
GB50176-2016 ASHRAE Standard 169-2021 21 July 21 January
Mohe 1A 7 23.1 —41.3 124.12 50.42 6805 4
Heihe 1B 7 25.8 —35.2 127.48 50.25 6310 4
Harbin 1C 7 27.2 —27.8 126.53 45.8 5032 14
Shenyang 1D 5 274 —23.1 123.43 41.8 3929 25
Beijing 2A 4 30.2 —-10.8 116.4 39.9 2699 94
Taiyuan 2B 5 27.5 —14.9 112.55 37.87 3160 11
Shanghai 3A 3 32.1 -1.9 121.47 32.23 1540 199
Changsha 3B 3 32.9 —-1.2 112.93 28.23 1466 230
Chengdu 3C 3 30.1 0.8 104.07 30.67 1344 56
Wuzhou 4B 2 31.1 3.8 111.27 23.48 551 232
Guiyang 5A 3 26.9 —-3.1 106.63 26.65 1703 3

2.3. Parameter Adjustment of the Ice Storage System

Among the 11 cities studied, the effects of altering the parameters of Chengdu’s
model are the most preeminent due to it having the highest cooling load and the highest
energy consumption. Therefore, we use Chengdu as an example, study the hourly energy
consumption of the baseline model of the shopping mall and the ice storage model on 21
July, and change the control parameters of the ice storage system to observe the changes, to
study the effect of different parameters on the ice storage system.

2.3.1. Different Storage Capacity: Change the Sizing Factor of the Chiller

The capacity of the chiller will affect the cold storage capacity of the ice storage system,
thereby affecting its power consumption. In OpenStudio, every chiller has a field for
“Sizing Factor”, which allocates the design load across multiple equipment units with a
default value of 1. In this section, manipulating sizing factors allows for load allocation
between chillers and ice tanks, as depicted in Formula (1).

Cooling load of chiller
Total cooling load of all equipment

Sizing factor = @

Equipment includes chiller 1, chiller 2, ice tank 1, and ice tank 2.

Assuming that the sum of the capacity of the chillers and the ice tanks is 1. When the
proportion of the capacity of the chiller is smaller, the proportion of the ice tank is higher,
and the cold storage capacity of the chiller is stronger. On the premise of the same operating
schedule, the ice storage system with weaker capacity will complete charging faster, but
the capacity of cold storage will also be reduced accordingly. The chillers will undertake a
higher cooling load when the cooling load is high. By adjusting the sizing factor of the ice
storage system within OpenStudio to modify the cold storage capacity and subsequently
observing the resulting variation in system cooling power consumption and related data,
we can assess the impact of ice storage capacity on the energy-saving potential.

2.3.2. Different Schedules: Change the Running Schedule of the Ice Storage System

Since the chiller and ice tank will simultaneously cool the medium in the circuit, the
control of the ice tank’s inlet temperature will affect the ice tank’s cooling efficiency. When
the inlet temperature rises, the chiller will automatically reduce the cooling effect, allowing
the ice tank to play a greater role. Therefore, the method of controlling the variation of the
inlet temperature in a day is used to control the operation schedule of the ice storage system.

In this paper, two running schedules of the ice storage system are set up, the “Ice-
priority” and “TOU schedule”. Within these scenarios, under the “Ice-priority” running
schedule, the cooling system will give precedence to the ice tank for managing the cooling
load during its operation. Conversely, in the case of the “TOU schedule” setting, the cooling
system will adapt the operational distribution between the ice storage tank and chiller
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according to the variations in peak-to-valley electricity prices throughout the day. The
temperature setting of the TOU schedule in OpenStudio is shown in Figure 5. The inlet
temperature of the ice tank is 26 °C during the peak electricity price period of the day, —5
°C during the valley value period, and 20 °C during the other period, to charging during
the low electricity consumption period and undertaking more cooling capacity during
the peak electricity consumption period, thereby reducing the power consumption of the
chiller.

y —— |ce-priority schedule ~=—— TOU schedule
Ice tanks work only—
Ice - chiller —
Chillers work only. -
T T T T v » Time
0:00 4:00 8:00 12: 00 16: 00 20: 00 24: 00

Ice tanks work only: if the ice tank does not have enough cooling capacity, the remaining load will be borne by the chiller.
Figure 5. The temperature setting of the TOU schedule.

2.4. Optimization Analysis Using Peak-to-Valley Electricity Price

This study has selected 11 cities in China situated in different climate regions. Accord-
ing to the ‘Unified standard for the design of civil buildings’ [51], various climate zones are
categorized using a two-tier regional system. The primary category comprises 7 first-tier
climate zones, while the secondary category encompasses 20 second-tier climate zones.
The first-tier zones reflect the substantial climatic disparities across the country, while the
second-tier zones represent more detailed climatic distinctions within major regions. The
11 cities studied in this study belong to 11 distinct climate zones, 1A, 1B, 1C, and 1D are
categorized as severe cold regions, 2A and 2B fall within the cold region, 3A, 3B, and 3C
pertain to the hot-summer and cold-winter region. In contrast, 4B and 5A belong to the
hot-summer, warm-winter, and temperate regions.

By the above-mentioned methods, the models of the 11 cities studied in this article were
individually adjusted parameters and simulated. Their energy consumption and electricity
costs were studied to optimize the control strategies of the models. EnergyPlus is used
to simulate the ice storage system model under different parameter controls established
above, and the output variables of each model are obtained. The economic performance of
different models can be studied by applying different electricity price standards in different
regions for comparative analysis.

This study investigated the peak-to-valley electricity pricing standards for 11 cities,
focusing primarily on commercial electricity consumers within the 1-10 kV voltage range.
The survey results show that among the cities, Chengdu has the highest peak power price,
and the peak-valley price gap is the largest. The peak price is 1.2621 yuan/kWh, and the
valley price is 0.3388 yuan/kWh. The peak electricity price in Taiyuan is the lowest, but the
difference between peak and valley electricity prices is the smallest. The peak electricity
price is 0.8699 yuan/kWHh, and the valley electricity price is 0.3019 yuan/kWh. The detailed
electricity price information is presented in Table 6.

Among them, the peak-to-valley period of electricity price is divided as shown in
Table 7.
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Table 6. Peak-to-valley electricity price.

Electricity Price Policy (Yuan/Degree)

City Voltage Level
Peak Hours  Valley Hours  Flat Hours
1A Mohe 1-10 kV 1.1270 0.3922 0.7596
1B Heihe 1-10 kV 1.1270 0.3922 0.7596
1C Harbin 1-10 kV 1.1270 0.3922 0.7596
1D Shenyang 1-10 kV 1.0229 0.3635 0.6932
2A Beijing 1-10 kV 1.1239 0.5715 0.8314
2B Taiyuan 1-10 kV 0.8699 0.3019 0.5735
3A Shanghai 1-10kV 1.0965 0.3427 0.6853
3B Changsha 1-10 kV 1.2456 0.3461 0.7958
3C Chengdu 1-10 kV 1.2621 0.3388 0.8005
4B Wuzhou 1-10 kV 1.1049 0.4028 0.7539
5A Guiyang 1-10 kV 0.9680 0.3395 0.6538

Table 7. The definition of Peak-to-valley period.

Category Period

Peak hours 11:00-12:00, 14:00-21:00
Valley hours 23:00-7:00 (the next day)

Flat hours 7:00-11:00, 12:00-14:00, 21:00-23:00

In the model output file, the main output data include the cooling capacity conversion
of the cooling system, the power consumption of the chiller, the power consumption of
the cooling system, the power consumption of the terminal equipment, and so on. This
paper primarily focuses on investigating the impact of the ice storage system on the power
consumption of the cooling system. Therefore, the main emphasis is placed on analyzing
and evaluating the power consumption of the cooling system. According to the results of
the above electricity price survey, the economic analysis of the ice storage system is carried
out. The calculation method of the operating cost of the ice storage system is as follows:
in the output variable files of EnergyPlus, the hourly cooling power consumption of the
model is multiplied by the electricity price of the corresponding period and then added to
obtain the system operating cost, namely operating costs.

W= Y5 xDP; )

where, Si is the electricity price corresponding to period i, P; is the power consumption of
the system corresponding to period i.

3. Results
3.1. Validation of the Baseline Model

For the baseline model used in this study, measured data was used to compare and
validate the model. A certain commercial building was selected as a case study, and basic
building information was collected through on-site visits, and monthly energy consumption
data was downloaded from the building management system. The accuracy of the model
was verified by comparing the measured monthly electricity consumption data and natural
gas usage with the energy consumption data of the baseline model. The coefficient of
variation of the root mean square error (CVRMSE) and normalized mean bias error (NMBE)
were used as evaluation indicators to reflect the accuracy of the model.

CVRMSE and NMBE are two statistical metrics used to evaluate calibration models.
CVRMSE stands for root mean square error coefficient of variation and NMBE stands for
normalized mean bias error.

CVRMSE is the ratio of the root mean square error to the mean of the predicted values,
usually expressed as a percentage. The smaller the CVRMSE, the higher the predictive
accuracy of the model. NMBE is the mean deviation between predicted and actual values,
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usually expressed as a percentage. They are calculated using the Formulas (3) and (4).
ASHRAE Guideline 14 sets the goal for monthly calibration to be within 15% for CVRMSE
and £+5% for NMBE.

N—=

{Z (yi — ?i)z/”]
CVRMSE = 100% x —

®)

NMBE = 100% x M @)
where:

y; is the measured data;

7 is the simulated data;

y is the mean of measured data;
n is the number of the data.

According to Formulas (3) and (4), CVRMSE and NMBE values for energy consump-
tion data and natural gas data were calculated separately. The CVRMSE values for electricity
consumption and natural gas are 8.6% and 12.9%, respectively, both less than 15%, while
NMBE values are 1.57% and 1.24%, respectively, both less than 5%. These values are within
a reasonable range.

The case study building selected is located in Changsha, China, which is a hot summer
and cold winter region with high humidity throughout the year. The mall has a floor height
of 4.7 m. The first floor of the building has windows, with an east window-to-wall ratio
(WWR) of 0.35, south WWR of 0.56, west WWR of 0.35, and north WWR of 0.3. The building
area is 209,591 m2. The interior space of the building is divided into eight functional types:
parking lot, catering, office, cinema, corridor, clothing, supermarket, and catering. The area
of each functional type is shown in Figures 6 and 7.

4.9% 2.9%

17.2% .
= Cinema

21.5% .
= Clothing
Corridio
m Entertainment
Restaurant
22.3% Office
13.7% Parking lot

= Supermarket

8.6% 8.9%

Figure 6. Area of each function type (measured data).
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Figure 7. Area of each function type (baseline model).

After summarizing and compiling the monthly electricity and natural gas usage
data for the shopping mall, it can be seen that the electricity consumption is higher in
summer, with a maximum unit area electricity consumption index of 15.79 kWh/ m? in
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August, while natural gas usage is highest in January at 0.02178 GJ/m?. Compared with the
simulated electricity consumption and natural gas usage data of the baseline model, which
are summarized in Figures 8 and 9. The figures show the monthly energy consumption
change curves for measured and simulated data, respectively.
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Figure 8. Monthly electrical energy consumption.
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Figure 9. Monthly natural gas consumption.

3.2. Simulation Results of Baseline Models of Different Cities

For the 11 cities studied, the corresponding regional weather file is added to the
baseline model of their shopping malls in OpenStudio, and EnergyPlus is used to simulate
the models above. The energy consumption of the cooling system of the baseline model in
each region can be obtained.

Referring to the energy consumption of unit area in a year except for the heating index
of general public buildings, which is 60-110 kWh/(m?-a) [52], the annual energy consump-
tion of each model of 11 cities is calculated and converted into the energy consumption of
unit area except heating. The results are shown in Figure 10.

One important point to note is that, due to Guiyang having a longer cooling season
and a lower peak load, compared to Taiyuan, despite Guiyang having a cooler climate, the
values of non-heating energy consumption indicators are higher.

Two chillers are working at the same time in the refrigeration system of the model.
The main cooling load is borne by chiller 1. Because the Chengdu model demonstrates
the highest cooling load among all the models under study, the array of metrics related to
refrigeration achieves an enhanced level of representational significance. Consequently,
the Chengdu model is herein selected as the exemplar for illustration. Figure 11 shows the
monthly energy consumption of the baseline model of Chengdu. Among them, (a) shows
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the monthly cooling power consumption of the baseline model in Chengdu City, and
(b) shows the COP of two chillers in the air conditioning system. It was be found that the
COP of the chillers will reach the maximum in July and August when the cooling load is
the highest. The COP of chiller 1 in each model was calculated. The results are shown in
Figure 12. Compared to other periods, the COP of chiller 1 is higher during periods of
higher cooling load throughout the year.
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Figure 10. Annual energy consumption of unit area except for heating.
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Figure 11. Energy consumption of the Chengdu model.
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Figure 12. The annual variation of Chiller 1’s COP.

From the preliminary simulation results, the peak power consumption of the cooling
system of the baseline model appears in July and August, and the minimum value appears
in January and February. The energy consumption of these models decreases with the
increase of latitude in the region, which is consistent with the actual situation that the lower
the latitude of the city, the larger the demand for cooling capacity.
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3.3. Simulation Results of Ice Storage Model

The ice storage system’s initial operational schedule is configured as the “Ice—priority”
schedule, and the initial allocation of chiller capacity is set at 0.35. To integrate the ice
storage systems into the baseline model, we monitor the hourly fluctuations of the chiller’s
Coefficient of Performance (COP) on 21 July before and after this integration. This study
draws attention to 11 cities located within five diverse climate zones in China. Among
these, the following four cities were specifically chosen as representatives: Mohe, Beijing,
Changsha, and Guiyang. The primary objective is to conduct a comprehensive hour-by-
hour analysis of the operational dynamics of refrigeration systems in these four cities,
specifically on 21 July, a day characterized by exceptionally high cooling load demands.
The findings are visually presented in Figures 13-16. It is evident that after adding the ice
storage system, the chiller unit will experience long periods of inactivity. During these
intervals, the ice storage system entirely supports the cooling load. At the same time,
during the remaining periods, it collaborates with the ice storage system concurrently, thus
facilitating the achievement of peak-shaving and valley-filling energy consumption effects.
Furthermore, as the cooling demand intensifies in urban areas, the chiller’s downtime is re-
duced. This phenomenon can be attributed to the frequent collaboration between the chiller
and the local ice storage system, driven by the increasing demand for cooling requirements.
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Figure 13. Operational strategies on a high cooling load day of the Mohe model.
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Figure 14. Operational strategies on a high cooling load day of the Beijing model.

The ice storage system is added to the baseline model in different cities and simulated
to obtain the energy consumption data of the model before and after the addition. The
energy consumption data before and after the addition of the ice storage system is sub-
tracted, which is the energy consumption saved by the ice storage system. By calculating
the annual electricity cost using the provided data, the cost savings in electricity expenses
can be determined for different cities upon the implementation of ice storage systems. The
annual electricity cost calculation results of the 11 models are summarized in Figure 17.
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Figure 15. Operational strategies on a high cooling load day of the Changsha model.
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Figure 16. Operational strategies on a high cooling load day of the Guiyang model.
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Figure 17. Annual electricity cost of the models.

Among them, the Chengdu ice storage model has the largest reduction in electricity
bills. A total of 1,043,120 yuan in electricity costs will be saved each year, a decrease of
44.92% compared with the baseline model. While the baseline model in Wuzhou has the
highest electricity cost, after adding the ice storage system, the system can save the highest
amount of electricity in the whole year, which is 1,451,263 yuan. The electricity cost savings
in Mohe after adding the ice storage model account for the smallest proportion of the
electricity cost of the meta-model, which is 17.37%, saving 521,314 yuan per year. The
simulation results of other models are summarized in Table 8.
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Table 8. Electricity cost of the 11 models with different cooling systems.

City Climate Zone Electric Costs of the Electric Costs of the Ice Electric Costs Variation
Baseline Model/Yuan Storage Model/Yuan Saved/Yuan
Mohe 1A 630,905 521,314 109,590 17.37%
Heihe 1B 746,877 548,283 198,593 26.59%
Harbin 1C 1,014,725 709,499 305,225 30.08%
Shenyang 1D 1,330,321 901,650 428,670 32.22%
Beijing 2A 1,818,894 1,332,607 486,286 26.74%
Taiyuan 2B 1,015,795 637,805 377,989 37.21%
Shanghai 3A 2,446,728 1,480,026 966,702 39.51%
Changsha 3B 2,858,214 1,642,792 1,215,422 42.52%
Chengdu 3C 2,322,064 1,278,944 1,043,120 44.92%
Wuzhou 4B 3,518,594 2,067,331 1,451,263 41.25%
Guiyang 5A 1,365,668 861,824 503,844 36.89%

3.4. Optimization Results of the Control Parameters for the Case Model
3.4.1. Changing the Proportion of Chiller Capacity

The initial setting of the ice storage system stipulates that the operating schedule is
the “Ice-priority” schedule, and the sizing factor of the chiller is set to 0.35, 0.4, and 0.5
separately for simulation. The simulation results are shown in Figure 18.
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Figure 18. Energy consumption of the chillers with different sizing factors.

The simulation results of the model with different sizing factors in Chengdu are shown
in Table 9. When the proportion of chiller capacity decreases, the ice storage system will
undertake more cooling load, and the electricity costs of the cooling system will also drop
significantly. The proportion of chiller capacity is 0.35, compared with the ratio of 0.5,
the electricity costs on a typical design day will be reduced by 13.41%. However, when
the chiller’s capacity is lower than 0.35, the electricity costs of the cooling systems do not
decrease significantly. Considering that the load of the chiller is too small in this situation,
the initial investment in the ice storage system may increase, which will lead to an increase
in the total cost and improve the economic efficiency of the system.

Table 9. Simulation results of the model with different sizing factors in Chengdu.

Sizing Factor = 0.3  Sizing Factor = 0.4 Sizing Factor = 0.5

Electric costs [yuan] 12,6194 13,537 14,573.9
Cooling: Electricity [G]] 61 67.6 77.1

3.4.2. Changing the Schedule of the Ice Storage System

In the initial configuration of the ice storage system, the chiller’s capacity ratio is
specified at 0.35. The simulation involves the use of two kinds of schedules. The simulation
results are shown in Figure 19.
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Figure 19. Energy consumption of the chillers with different running schedules.

The graph illustrates that the cooling electricity consumption curve of the baseline
model exhibits relatively high values during the peak cooling load period within a day, with
a maximum peak of 5.74 GJ occurring at 15:00. After the incorporation of the ice storage
system and operating it under the TOU schedule, it demonstrates a more uniform energy
consumption pattern in contrast to the ‘Ice-priority” schedule. Analyzing the simulation
results of the ice storage system under two distinct operation schedules, it is observed
that when the system operates based on the “TOU schedule,” it enables charging during
periods of low power consumption and working during the peak power consumption
period. Actively undertaking more cooling loads during different periods can reasonably
use the fluctuation characteristics of electricity prices in a day to work so that the system’s
electricity consumption costs can be reduced during peak periods, thereby achieving the
effect of peak-shaving and valley-filling electricity consumption. Compared to the baseline
model’s electricity costs on 21 July, the electricity costs of the model running according to
the ‘Ice-priority” schedule will decrease by 45.97%, while the electricity costs of the model
running under the “TOU schedule” will decrease by 50.83%.

3.5. Optimization Results of Model Operation Schemes for Each City

Based on the research above, we can derive a preliminary conclusion: applying an ice
storage system in regions with a substantial cooling load offers a greater potential for energy
conservation. Furthermore, the effective utilization of peak-to-valley electricity pricing can
significantly reduce energy consumption. Adopting the methodology described above,
the parameters for the 11 cities examined in this study were adjusted and simulated. As a
result, an operational control strategy for the ice storage system was developed, according
to each city’s specific climate zone.

3.5.1. Optimizing Chiller Capacity

When the proportion of chiller capacity decreases, the ice storage system will un-
dertake more cooling load, and the cooling power consumption of the system will also
decrease accordingly. Nonetheless, it’s important to note that the chiller’s capacity should
be raised. This method might lead to an augment in the initial investment of the ice storage
system, subsequently raising the overall cost and potentially impacting the energy perfor-
mance of the system. For the 11 cities studied, their different peak-to-valley flat electricity
price structures will also impact the effect of chiller capacity. From the analysis above, it
can be observed that there is a linear relationship between the electricity cost of the ice
storage system and the sizing factor. Therefore, for the research conducted on the models
of other cities, the scenario where the sizing factor equals 0.4 can be excluded. Comparing
the two cases where the sizing factor of the chiller is 0.35 and 0.5, the most significant
decrease in electricity costs is the ice storage system of Chengdu, and in cities apart from
Chengdu, when the sizing factor of the chiller is 0.35, the effect of saving electricity costs
is better. Except for Chengdu, the models of Changsha and Wuzhou demonstrate more
preeminent effects when altering the sizing factor. In comparison to the baseline model,
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they can achieve electricity cost savings of 45.52% and 41.25%, respectively. The results are
summarized in Table 10.

Table 10. Simulation results of models with different sizing factors.

Electric Costs Saved/Yuan Variation
City Climate Zone — — — —
Sizing Factor = 0.35 Sizing Factor = 0.5 Sizing Factor = 0.35 Sizing Factor = 0.5

Mohe 1A 109,590 1022 17.37% 0.16%

Heihe 1B 198,593 109,025 26.59% 14.60%
Harbin 1C 305,225 202,353 30.08% 19.94%
Shenyang 1D 428,670 333,529 32.22% 25.07%

Beijing 2A 486,286 298,630 26.74% 16.42%
Taiyuan 2B 377,989 327,003 37.21% 32.19%
Shanghai 3A 966,702 931,048 39.51% 38.05%
Changsha 3B 1,215,422 1,149,862 42.52% 40.23%
Chengdu 3C 1,043,120 1,086,317 44.92% 46.78%
Wuzhou 4B 1,451,263 1,348,566 41.25% 38.33%
Guiyang 5A 503,844 416,362 36.89% 30.49%

3.5.2. Optimizing the Operation Schedule
During the 12 months of the year, the running schedules of the ice storage systems in
the 11 cities studied in this paper were adjusted and simulated, and the obtained data were
substituted into the calculations according to Formula (2). When the ice storage system
operates according to the “TOU schedule’, the annual electricity costs will be reduced to
varying degrees. The results obtained are summarized in Table 11.
Table 11. Simulation results of models with different running schedules.
Electric Costs Saved/Yuan Variation
City Climate Zone — —
Ice-Priority TOU Schedule Ice-Priority TOU Schedule
Mohe 1A 109,590 154,782 17.37% 24.53%
Heihe 1B 198,593 234,978 26.59% 31.46%
Harbin 1C 305,225 363,656 30.08% 35.84%
Shenyang 1D 428,670 528,593 32.22% 39.73%
Beijing 2A 486,286 575,912 26.74% 31.66%
Taiyuan 2B 377,989 436,452 37.21% 42.97%
Shanghai 3A 966,702 1,166,709 39.51% 47.68%
Changsha 3B 1,215,422 1,385,999 42.52% 48.49%
Chengdu 3C 1,043,120 1,242,884 44.92% 53.52%
Wuzhou 4B 1,451,263 1,645,692 41.25% 46.77%
Guiyang 5A 503,844 611,538 36.89% 44.78%

The simulation results revealed a significant correlation: the closer a city is to the
equator, namely a lower latitude, the higher the cooling load becomes. Furthermore,
the potential of applying ice storage systems is larger and results in more prominent
economic efficiency.

In addition, the greater the difference between peak and valley electricity prices, the
better the energy-saving effect of the ice storage system. Among these 11 cities, Chengdu
has the largest difference in peak-to-valley electricity prices, and the cooling load in the
cooling season is relatively large. Hence, the ice storage system applied in Chengdu has
the best effect in saving electricity costs and has the considerable potential of applying ice
storage systems.

4. Discussion

This article has studied the enhanced operation of ice storage systems for peak load
management in shopping malls across diverse climate zones. The research aimed to
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optimize the economic performance and cooling efficiency of these systems by considering

the unique electricity pricing frameworks of different cities. The findings of the study

provide valuable insights for stakeholders involved in the deployment and operation of ice
storage systems in shopping malls. However, there are several aspects worth discussing
or improving.

(1)  One of the key observations from the research is the significant peak-shaving and
valley-filling effects observed in regions characterized by lower latitudes and substan-
tial cooling loads. Ice storage systems effectively reduce peak electricity demand and
shift cooling loads to off-peak periods in such climatic conditions. By leveraging the
temporal dynamics of TOU power pricing, a finely calibrated operational schedule
for the ice storage system was devised, resulting in substantial reductions in model
electricity charges.

(2) The study highlights the importance of ice storage capacity and operational schedules
in influencing economic viability and cooling efficiency. Strategic reallocation of
resources, such as reducing chiller capacity and increasing ice storage system capacity,
enhances cooling efficiency and reduces cooling-related electricity expenses. Optimiz-
ing the capacity balance between chiller systems and ice storage systems improves
overall performance.

(3) In this paper, the baseline model is verified by comparing the measured energy
consumption data. Although the evaluation indexes are in a reasonable range, the
model can actually be made to meet the requirements by using other combinations
of parameters, for example, using different combinations of cooling systems and
building envelopes, etc. In the future research, more real cases of ice storage systems
should be researched, and parameters should be limited to a more precise range to
get a baseline model with higher accuracy and credibility, and a discussion should be
carried out on the basis of which, so as to better research on the future application of
phase-change thermal storage systems in energy saving of buildings.

(4) Itis important to acknowledge the limitations and difficulties faced during the study.
The research focused specifically on shopping malls, and the findings may not directly
apply to other types of buildings or facilities. Additionally, the study assumed ideal
conditions and did not consider factors such as equipment reliability, maintenance
costs, and implementation challenges that may arise in real-world scenarios. Future
research should address these limitations by conducting field studies and considering
a broader range of building types.

(5) The primary focus of this study is on the simulation and operational optimization
of ice storage systems in multi-climate zones at the urban scale. Additionally, the
research includes an economic analysis and discussion of the model’s output results.
However, there is a lack of thorough validation and error analysis of the optimized
model’s results. The absence of real-world building data that closely aligns with the
model has posed challenges for result validation. In future research, further study of
the model’s result accuracy to calibrate and refine additional details of the model will
be developed, which will allow for a more comprehensive validation of the model’s
optimization outcomes.

Furthermore, the research could benefit from exploring additional control strategies
for ice storage systems. The study primarily focused on chilled water priority mode, ice
melting priority mode, and optimized control mode. Investigating other control strategies
and evaluating their performance in different climate zones could provide further insights
into maximizing the economic viability and cooling efficiency of ice storage systems.

Overall, this article demonstrates the optimization and deployment of ice storage
systems in shopping malls across diverse climate zones. It emphasizes the importance of
considering electricity pricing frameworks, capacity balance, and operational schedules
in achieving economic performance and cooling efficiency. However, further research
is needed to address limitations, explore alternative control strategies, and validate the
findings in real-world scenarios. By continuing to investigate and refine ice storage system
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operation, stakeholders can make informed decisions and effectively utilize this sustainable
cooling solution in various climatic regions.

5. Conclusions

In this study, we extensively examined the development and economic evaluation of
ice storage system models in 11 diverse Chinese cities’ shopping malls. We crafted precise
operational strategies tailored to each city’s unique climate conditions. Our approach
involved integrating ice storage systems into various shopping mall models in distinct
regions and conducting comprehensive simulations.

The results reveal the substantial impact of ice storage systems on reducing peak
electricity costs and meeting cooling demands in shopping malls, particularly in lower
latitude areas with higher cooling needs. These improvements in economic performance
were most pronounced in Chengdu, where cooling electricity expenses saw the most
significant reduction due to the incorporation of ice storage systems.

We also highlight the importance of ice storage capacity and operational schedules in
enhancing the system’s economic viability and cooling efficiency. Skillful adjustment of the
ice tank’s inlet temperature during peak-to-valley electricity pricing fluctuations enables the
system to charge during low-price periods and provide cooling during peak-price intervals,
resulting in significant cost savings. The implementation of a “TOU schedule’ notably
reduced electricity charges in the Chengdu model. Additionally, our study underscores
that reducing the chiller’s sizing factor increases the ice storage system’s capacity to
handle cooling loads, leading to decreased electricity charges to some extent. This effect is
particularly prominent in the shopping malls in cities with higher cooling demands.

In conclusion, our comprehensive analysis of ice storage system models across diverse
climatic regions in China offers valuable insights for optimized system implementation.
Our research emphasizes the importance of tailored operational schedules, adjustments
to ice storage capacity, and chiller sizing optimization to enhance economic performance and
cooling efficiency. These findings provide a valuable resource for practitioners and decision
makers seeking sustainable and cost-effective cooling solutions in shopping mall environments.
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