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A B S T R A C T

Urban building retrofitting is a critical approach for energy conservation and carbon reduction, and proper 
quantification tools could help lower the cost for large-scale urban renewal. This paper introduces City Energy 
Lab (CityEL), a web-based platform that supports city-scale building energy efficiency. Compared to existing 
Urban Building Energy Modeling (UBEM) tools, which often focus on aggregated regional results, CityEL not only 
facilitates rapid UBEM but also focuses on analyzing multiple neighborhood scales, particularly for the reno
vation of old residential neighborhoods. CityEL uses AutoBPS as its core engine to establish benchmark and 
energy retrofit models and utilizes Geographic Information System (GIS) tools to enable rapid modeling, multi- 
neighborhood benchmarking, and comprehensive retrofit scenario evaluation. By streamlining energy bench
marking, retrofit scenario development, and economic viability analysis, CityEL provides a comprehensive 
framework for scalable, cost-effective urban renewal decisions. To illustrate its capabilities, CityEL was applied 
in a case study of Shanghai’s Huangpu District, where the platform modelled 7934 buildings across 304 
neighborhoods, 245 neighborhoods were identified as economically viable for retrofitting, reducing electricity 
consumption to 786.4 GWh and gas consumption to 303.2 GWh, respectively. These findings highlight CityEL’s 
role in streamlining multi-scale decision-making and advancing methodological frameworks for sustainable 
urban energy management.

1. Introduction

The world is currently experiencing rapid urbanization. About 75 % 
of the primary energy worldwide is consumed in cities, which also ac
count for over 70 % of global greenhouse gas emissions (Hu et al., 2022). 
Achieving energy-saving and emission-reducing targets requires 
awareness of urban structures and the sensible renovation of old resi
dential neighborhood (Liu et al., 2020; Yang et al., 2023). Residential 
building renovations are often carried out on a neighborhood basis in 
China. China plans to renovate over 50,000 old urban residential 
neighborhoods in 2024 to support urban renewal projects, and proper 
methods could help policymakers to effectively guide these renovations 
(Zhou et al., 2024).

Urban building energy modeling (UBEM) is the method of compu
tational simulation and analysis of the performance of urban buildings, 

which could mainly be divided into top-down and bottom-up ap
proaches (Reinhart & Cerezo Davila, 2016). The top-down paradigm is a 
strategy that begins at a macro-level perspective and progressively re
fines to a micro-level. It emphasized the link between macroeconomic 
variables and energy consumption; nevertheless, it lacked a complete 
study of technological options and spatiotemporal characteristics (Ang 
et al., 2020). In contrast, the bottom-up paradigm begins with the 
characteristics of individual buildings, models their physical conditions, 
and then aggregates these elements to the urban level (Pan et al., 2023). 
The primary applications of UBEM include individual behavior research 
(Ferrando et al., 2020), energy consumption analysis (Mansó et al., 
2023; Yuan et al., 2023), and the optimization schemes development 
(Talebi et al., 2016). Bottom-up UBEM provides a quantitative 
perspective to calculate the overall energy consumption, renovation 
costs, and post-renovation outputs, thus guiding urban building design 

* Corresponding author at: College of Civil Engineering, Hunan University, Changsha 410082, China.
E-mail address: yixingchen@hnu.edu.cn (Y. Chen). 

Contents lists available at ScienceDirect

Sustainable Cities and Society

journal homepage: www.elsevier.com/locate/scs

https://doi.org/10.1016/j.scs.2025.106147
Received 7 August 2024; Received in revised form 9 January 2025; Accepted 12 January 2025  

Sustainable Cities and Society 120 (2025) 106147 

Available online 13 January 2025 
2210-6707/© 2025 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 

https://orcid.org/0000-0003-2365-2477
https://orcid.org/0000-0003-2365-2477
https://orcid.org/0000-0001-9259-419X
https://orcid.org/0000-0001-9259-419X
mailto:yixingchen@hnu.edu.cn
www.sciencedirect.com/science/journal/22106707
https://www.elsevier.com/locate/scs
https://doi.org/10.1016/j.scs.2025.106147
https://doi.org/10.1016/j.scs.2025.106147


and energy policy formulation (Ang et al., 2020). The accuracy of UBEM 
was also validated (Bass et al., 2022). Despite the advantages of UBEM in 
providing high-precision solutions for specific problems, it requires 
extensive data, computational resources (Ali et al., 2021) and complex 
processes.

Many studies attempted to automate the complex processes of UBEM 
and construct a series of UBEM tools (Ferrando et al., 2020). In the early 
stages, most UBEM tools operated locally, the Urban Modeling Interface 
(UMI) (Kandelan et al., 2024) functions as a plug-in for the Rhinoceros 
3D, allowing 3D building models to be exported to EnergyPlus models. 
URBANopt (Charan et al., 2021) is an open-source simulation platform 
for analyzing the energy performance of low-energy districts, 
high-performance buildings, and energy systems in urban areas with 
customizable modules for flexible use; Combined Energy Simulation 
And Retrofitting (CESAR) (Wang et al., 2018) calculates current building 
energy demand and projects future scenarios to evaluate energy stra
tegies and sustainability targets in Swiss districts; City Energy Analyst 
(CEA) (Cevallos-Sierra et al., 2024) was a Python-based tool with an 
intuitive graphical interface, simplifying building heating and cooling 
load analysis for neighborhood energy planning. TEASER (Remmen 
et al., 2018) was another Python-based application that aims to inte
grate UBEM and urban system energy modeling, enhancingthe repre
sentation of the urban building environment more detailed and 
promoting a comprehensive understanding of city-scale energy systems. 
Recently, Hunan University developed Automated Building Perfor
mance Simulation (AutoBPS) (Deng et al., 2023), which uses Geographic 
JavaScript Object Notation (GeoJSON) as input and EnergyPlus as the 
calculation engine, providing comprehensive urban building energy 
consumption simulation for residential and commercial buildings. 
AutoBPS supported diverse energy analyses, including prototype 
building generation (Yang et al., 2024), rapid urban building energy 
modeling (Deng et al., 2022; Song et al., 2024), analysis of various 
energy-saving measures (including demand response (Peng et al., 2023), 
renovation (Ji et al., 2023), rooftop photovoltaics (Ren et al., 2024)).

UBEM tools is suggested to adopt a clear step-by-step interface to 
attract more professional users, and focus on specific input-output data 
to enhance reliability and simulation efficiency (Salvalai et al., 2024). 
Some UBEM tools use or complement the modeling process with 
web-based platforms to enhance the tool usability. Most UBEM tools 
require complex setup and software installation, and UBEM involves 
managing large data sets that are challenging to visualize effectively 
(Hong et al., 2020). Web-based platforms provide a solution to these 
challenges. CityBES (Hong et al., 2024) was an early web platform for 
simulating the energy performance of large structures, supporting en
ergy benchmarking, urban planning, retrofit analysis, building man
agement, photovoltaic (PV) potential assessment, and urban 
microclimate visualization. CEA also transitioned to a web tool, using 
data from OpenStreetMap and modeling with established physical 
models. Massachusetts Institute of Technology developed ubem.io (Ang 
et al., 2022) with UMI as its core engine to reduce the UBEM cost. It 
categorized UBEM engineers into three groups: city representatives, 
urban planners or GIS managers, and building consultants or energy 
modelers and created three representative functional modules. Recently, 
Sebin Choi and Sungmin Yoon (Choi & Yoon, 2024) used GPT-4o to 
develop GPT-UBEM, a top-down urban building energy modeling tool 
that integrates diverse data sources to optimize energy predictions and 
provide insights for low-carbon urban planning, with case studies in 
South Korea demonstrating its potential and limitations

Retrofit analysis of existing buildings was a key function of the UBEM 
tools, as selecting appropriate energy conservation measures (ECMs) 
was essential for crucial for achieving energy savings and carbon 
reduction (Fahlstedt et al., 2022), especially in developed cities with a 
large stock of existing buildings. Compared to commercial buildings, 
residential buildings receive greater attention for retrofitting (Ohene 
et al., 2022), with objectives primarily focused on improving comfort, 
reducing energy consumption, lowering renovation costs, and 

decreasing carbon emissions. Earlier retrofitting researches mainly 
focused on the level of a single building (Huang et al., 2020). Recently, 
large-scale retrofitting becomes increasingly popular because it includes 
energy sharing, peak shaving, trade-offs across multiple buildings, and a 
broader formulation of energy and sustainability goals and policies 
(Bjelland et al., 2024).

At the scale of a neighborhood, Vahid-Ghavidel et al. (2024) pro
posed an optimization framework using the umi to integrate urban 
building energy modeling with renewable energy planning, highlighting 
in a Chicago neighborhood study that solar PV and energy storage sys
tems are crucial for achieving CO2 reductions and cost-effectively 
balancing energy demands in low-carbon neighborhood development. 
Mansó Borràs et al. (Mansó Borràs et al., 2023) developed the UBEM of 
energy communities using CEA. They concluded that, compared to in
dividual residences, energy communities could provide greater photo
voltaic power self-sufficiency. Munguba et al. (Munguba et al., 2024) 
analyzed building complexes in Recife, Brazil. They concluded that 
integrating building modeling, economic analysis, and optimization 
better adjusts photovoltaic system scale and reduces overall energy 
consumption than implementing individual ECMs. At the scale of the 
city, Ali et al. (Ali et al., 2020) utilized a data-driven approach to 
develop the UBEM for Ireland. After comparing the efficiency and out
comes of various ECMs, they identified 16 effective measures and pro
vided retrofit recommendations for different types of residential 
buildings. Chen et al. (Chen, Hong & Piette, 2017) conducted ECM an
alyses for buildings in San Francisco, but these renovations primarily 
targeted large offices and small retail. Existing research indicated that 
community-based transformation was the optimal scale for trans
formation. Zhang et al. (Zhang et al., 2023) studied the impact of ECMs 
on carbon emissions at the building, community, and regional levels. 
Annual cost at the community scale was reduced by 27.3 % compared to 
individual buildings, and community-scale strategies reduced costs by 
1.9 % compared to the city scale.

The concept of "neighborhood" varies between international and 
Chinese contexts. Internationally, neighborhoods are generally consid
ered loosely regulated residential areas where individual homeowners 
have the autonomy to update their properties, typically consisting of 
single-family homes. In contrast, in China, neighborhoods refer to gated 
residential complexes, often comprising apartment buildings with 
shared management (Liu et al., 2021). Residents have no control over 
community-wide renovations or maintenance, which is handled by 
property management companies and local government authorities. 
Policymakers need to balance cost-effectiveness and energy-saving 
outcomes under limited economic conditions, but selecting the 
optimal residential communities is a challenge. Residential communities 
may contain mixed-use buildings and structures built in different pe
riods (Conticelli et al., 2024), leading to varied building parameters (Liu 
et al., 2022). Consequently, their energy-saving potential and appro
priate retrofitting measures differ.

Comparative analysis of multiple neighborhoods aids urban policy
makers in decision-making and supports the analysis of neighborhoods- 
level energy retrofits and the establishment of nearly zero-energy 
neighborhoods. Natanian et al. (Natanian et al., 2024) also indicate 
that UBEM tools require further integration for the design and analysis 
of nearly zero-energy neighborhoods and positive-energy neighbor
hood. Existing UBEM research and tools processed uploaded buildings as 
a single entity for input and output. However, the roofs of high-rise 
residential buildings are not owned by individual residents but are 
managed by the neighborhoods in most conditions in China. Addition
ally, analyzing shared energy storage in neighborhoods is necessary due 
to the mismatch between photovoltaic peak generation and peak elec
tricity demand (Walker & Kwon, 2021). Therefore, current methods that 
aggregated results for the whole city or neighborhood lacked compar
ative analysis for multiple neighborhoods.

This paper introduces CityEL, a web-based tool that uses AutoBPS as 
its core engine to quickly establish city-level EnergyPlus building 
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models, which can address the challenges of rapidly aggregating energy 
consumption data from multiple neighborhoods, and identifying the 
most suitable communities for retrofitting CityEL integrates multiple 
rapid UBEM analysis tools, including retrofit, photovoltaic and energy 
storage assessments, and incorporates a GIS system to quickly aggregate 
results from multiple neighborhoods and conduct a series of analyses. In 
addition to performing the basic functions of existing UBEM tools, Cit
yEL provides comprehensive results for multi-neighborhood analyses. 
Policymakers could swiftly select and compare various energy-saving 
retrofit measures and strategies across multiple neighborhoods in a city.

2. Methodology

This paper used CityEL to complete the process depicted in Fig. 1. 
Firstly, the user prepared the necessary building data and the area data 
to be analyzed as required and uploaded them to CityEL. Then, relevant 
project and retrofit settings were configured. CityEL then analyzed and 
combined the uploaded data on the back-end, selected suitable pro
totypes, and generated building footprint files in JSON format for 
AutoBPS, which could build EnergyPlus models automatically with 
GeoJSON and JSON as input. Subsequently, the back-end used the 
AutoBPS-Geo module to generate the uploaded building EnergyPlus 
models and ran them in multiple threads to obtain results. Following 
this, the back-end modules of CityEL were called to conduct spatial 
analysis on regional models aggregated from multiple areas. This pro
cess produced three outcomes: individual building models, the total 
results for all input buildings, and the neighborhood-level results based 
on user-uploaded areas.

2.1. Introduction to CityEL

CityEL is a project with a frontend-backend separation architecture. 
The front-end, developed in TypeScript, utilizes ReactJS as its 

framework, with Cesium for 3D visualization. To better integrate with 
AutoBPS, the back-end was developed using Ruby and Ruby on Rails as 
the framework, with MySQL serving as the database.

The overall interface of CityEL is shown in Fig. 2. The main 
component of the interface is a 3D building visualization using Cesium. 
The modules are divided as follows: PART 1. User Info, managing user 
login and projects; PART 2. Processing Steps, representing the current 
modeling steps. CityEL divides the modeling process into five steps: Step 
1, "Data," includes data upload and preprocessing; Step 2, "Model," in
cludes running and viewing the baseline model; Step 3, "Retrofit," in
cludes setting up and modeling energy retrofit scenarios; Step 4, "UBEM 
Results," includes the results of the entire model; and Step 5, "Aggre
gated Results," includes the aggregated results for multiple areas based 
on user-uploaded boundaries.

For the PART 3. Buildings and PART 4. Boundaries consist of user- 
uploaded data, allowing users to click and interact to display PART 5, 
which is Entity Detailed Information. This part contains various select
able information: "param" for basic building information, "baseline" and 
"retrofit" for the energy consumption results of the baseline and retrofit 
models, "hourly" for selecting and displaying energy consumption curves 
for any time within the 8760 h of a year, and "download" for down
loading the corresponding data. PART 6. Analysis Tools include various 
selectable and usable tools, with different tools available at each pro
cessing step, such as coloring parameters and displaying them in PART 
7. Colorbar. PART 8, the GIS Info Bar includes information on the cur
rent location.

CityEL uses AutoBPS to convert GeoJSON data into EnergyPlus 
models and provides additional features. In pre-processing, it stan
dardizes key fields like building type and adjusts inputs to match 
AutoBPS’s format. In post-processing, CityEL extends beyond individual 
building calculations by generating city-level prototypes and aggre
gating simulation results, which AutoBPS alone cannot do. CityEL uses 
geographic analysis module for energy consumption aggregation based 

Fig. 1. The framework of the research.
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on user-defined areas, meeting urban renewal needs by summarizing 
energy performance across multiple neighborhoods. It also helps 
configure energy storage in residential areas to manage excess energy 
from distributed PV systems.

2.2. Input data and preprocessing

CityEL currently only accepts input files in GeoJSON formats, a 
widely used format for encoding geographic data structures using 
JavaScript Object Notation (JSON). A GeoJSON must include 
geographic features, geometries, and properties.

CityEL is a flexible tool that can be used in many regions and cities, 
with only basic building data requirements. Below are some possible 
sources and references for obtaining the necessary data. Cities with 
established urban databases, such as New York, can easily generate re
sults using existing datasets. For areas and cities with comprehensive 
OpenStreetMap coverage, OpenStreetMap can be used to access suitable 
data (Atwal et al., 2022). In areas where data is provided by open 
mapping providers, the corresponding map services or a combination of 
multiple data sources can be utilized to acquire the required information 
(Song et al., 2024). For areas without access to the above sources, very 
high resolution satellite imagery can be used to gather the needed in
formation (Wang et al., 2025).

After uploading, CityEL verifies if the uploaded files meet basic re
quirements: compliance with the GeoJSON standard, no overlapping 
building footprints, and the properties of these buildings must also 
contain the building height/stories, built year and building type to 
match appropriate prototype buildings. If the data meet GeoJSON re
quirements, CityEL proceeds with GIS processing, assigning parameters 
like width, length, aspect ratio, area, and perimeter. With building age 
and type, AutoBPS assigns building physical parameters (including the 
wall U-value, window-to-wall ratio, and window performance, ect.) 
automatically with the specific building prototype and standards. Since 
the building types uploaded by users may be self-named, users can select 
building types and templates compatible with AutoBPS to preprocess the 
required building types.

Currently, CityEL supports 22 building types from ASHRAE 90.1, 16 
building types from DOE, and 22 building types developed by AutoBPS 
for urban buildings in China. AutoBPS adjusts local prototype building 
parameters according to Chinese standards based on city location: 
Residential and non-residential buildings are divided into three groups. 
Residential buildings follow JGJ 134–2001 and JGJ 134–2010 stan
dards: before 2001, 2002–2009, and after 2010. Commercial buildings 
follow GB 50,189–2005 and GB 50,189–2015 standards: before 2005, 
2005–2015, and after 2015. For mixed-use buildings, relevant parts are 

referenced according to respective regulations. Specific building types 
are shown in Table 1. Each building type corresponds to three prototype 
templates, with different parameters for each building year. Generally, 
older buildings have poorer thermal performance and energy efficiency 
of air conditioning systems.

Boundaries uploads does not require any properties. Neighborhoods 
boundaries can be obtained from OpenStreetMap or local mapslike 
Google Maps, Baidu Maps, Amap. Users can also manually delineate 
boundaries in software like QGIS or ArcGIS. This flexibility allows users 
to aggregate results for any area or number of areas as desired, including 
overlapping regions if needed.

2.3. Introduction to the case study area

Shanghai is one of the most developed cities in China, with a per
manent population of 24.8 million, Shanghai located in eastern China, 
along the west coast of the Pacific Ocean. Shanghai has a humid sub
tropical climate, with four distinct seasons. Summers are hot and humid, 
often exceeding 35 ◦C, while winters are mild but sometimes chilly. 
Huangpu District, as shown in Fig. 3, is a central area of Shanghai and 
one of its earliest developed districts, featuring many older buildings in 
need of renovation. This paper chose the Huangpu District of Shanghai, 

Fig. 2. The overall interface of CityEL.

Table 1 
The prototypes supported by CityEL.

ASHRAE 90.1 AutoBPS DOE

Small Office Small Hotel-stores Warehouse
Small Hotel Small Hotel Small Office
Small Data Center Shopping mall Small Hotel
Secondary School Retail Standalone Secondary School
Retail Strip mall Restaurant Retail Strip mall
Retail Standalone Primary School Retail Standalone
Quick Service Restaurant Office-shopping mall QuickServiceRestaurant
Primary School Mid-rise Apartment-stores Primary School
Outpatient Mid-rise Apartment Outpatient
Mid-rise Apartment Medium Office Mid-rise Apartment
Medium Office Detailed Low-rise Apartment-stores Medium Office
Medium Office Low-rise Apartment Large Office
Large Office Detailed Large Office-stores Large Hotel
Large Office Large Office Hospital
Large Hotel Large Hotel High-rise Apartment
Large Data Center Hotel-mall Full-Service Restaurant
Laboratory Hotel-office-mall ​
Hospital Hotel-office ​
High-rise Apartment Hotel-residential ​
Full-service Restaurant High-rise Apartment-stores ​
Warehouse High-rise Apartment ​
Super Market Hospital ​
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China, as a case study for rapid UBEM modeling and analysis to 
demonstrate how CityEL operates within the UBEM workflow.

This analysis included 12,578 building footprints with properties, 
including building ID, number of floors, building type, and construction 

era. Shanghai’s building input data was derived from a multi-source 
data fusion; detailed methods and data are available in this work 
(Song et al., 2024). The building type results for the Huangpu District 
were manually calibrated to ensure accuracy. Similar data for other 

Fig. 3. Introduction to Huangpu District.

Fig. 4. Urban building energy model generation framework.
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cities can be obtained using the same method.
Fig. 3(c) shows the neighborhoods in Huangpu, Huangpu District is 

predominantly composed of residential areas. Additionally, a significant 
portion of these residential areas consists of aging or older housing units. 
In this study, a total of 304 neighborhoods were considered for analysis.

2.4. Urban building energy model generation

The establishment of prototype buildings relies on the AutoBPS 
module AutoBPS-geo, as shown in Fig. 4. The input GeoJSON file con
tains building footprints and necessary properties, and then CityEL adds 
more geometric properties using geographic analysis module and de
composes these buildings into individual building JSON files containing 
geometry, type, construction year, and the appropriate climate file. 
Building geometry includes length, width, and number of floors. CityEL 
assigns the climate file based on the geographic location to the nearest 
epw file. Building type and construction year determine the prototype 
used. Each building runs the same process in parallel, and the results are 
merged on the back-end to enhance modeling and processing speed.

Current energy retrofit strategies for old residential neighborhoods 
in China mainly focus on roofs, walls, window overhangs, windows (e.g., 
replacing glass, adding energy-efficient coatings), energy-efficient air 
conditioners, and adding rooftop photovoltaics. In this case study, 
building parameters are set according to the mandatory national stan
dards in Shanghai and China. The specific parameters are referred to in 
Table 2.

2.5. Retrofitted building energy model generation

The original AutoBPS-retrofit was further enhanced to support more 
energy retrofit strategies during the development of CityEL. The current 
AutoBPS-retrofit energy model establishment process is shown in Fig. 5. 
The generated files include building geometric parameters (length, 
width, floors, height) and building prototypes (determined by building 
age and type). AutoBPS adjusts the geometric dimensions of the proto
type buildings with AutoBPS-Param module (Xi et al., 2023) to create a 
baseline model. This model, combined with the ECM list, generates the 
retrofitted building model. Subsequently, running the economic analysis 
module provides results, including baseline results, retrofitted results, 

energy savings, retrofit cost, and retrofit returns.
For the renovation of walls and roofs, adding external insulation 

layers is the primary method, with options for different materials and 
thicknesses. The selection of insulation type, thickness, and thermal 
conductivity can significantly affect the thermal performance of the 
building envelope. Users can choose the default Expanded Polystyrene 
Insulation Board (EPS) as the material by simply setting the thickness or 
creating new materials and thicknesses as EnergyPlus options. Alterna
tive insulation types, like mineral wool or rigid foam, allow users to 
balance cost, performance, and environmental impact. Insulation type, 
thickness, and thermal conductivity significantly affect building enve
lope performance. For example, the R-value of EPS varies with thick
ness, influencing heat loss reduction through walls and roofs.

For lighting adjustments, the primary modification is using high- 
efficiency LEDs to reduce lighting power density, and The use of LEDs 
also reduces cooling loads by minimizing waste heat. Window glass 
adjustments involve replacing them with Low-E windows, which may 
affect parameters such as U-factor, Solar Heat Gain Coefficient (SHGC), 
and Visible Transmittance (VT). Users need to be aware that SHGC and 
U-value are not independent of each other, and CityEL will check for 
their consistency. Replacing windows with Low-E glass reduces heat 
gains in summer and heat losses in winter, which directly impacts 
cooling and heating demands. For improvements to the cooling system, 
the focus is on the efficiency enhancement of the chiller and mini-split 
heat pump. For residential buildings, high-efficiency mini-split air 
conditioners and heat pumps are recommended to enhance energy 
performance. Variable-speed compressors can further improve effi
ciency. For commercial buildings, advanced air-cooled or water-cooled 
chillers are suggested for larger cooling loads. Higher COP systems, 
variable-speed compressors, and advanced heat exchangers can increase 
efficiency, with options depending on specific building needs. Each 
measure’s impact on COP is assessed to enhance overall cooling per
formance and reliability.

The retrofit of building overhangs involves identifying windows with 
exterior boundary conditions in EnergyPlus and automatically adding 
overhangs to them, and the users can select the depth and angle of the 
overhangs. Adding overhangs to windows helps improve shading, 
reduce cooling demands in summer, and enhance energy efficiency. The 
energy consumption changes due to overhangs depend on the region; in 
low-latitude areas, overhangs can significantly save energy, in low- 
latitude areas, overhangs significantly reduce cooling loads, while in 
higher latitudes, they allow more winter sunlight.

The photovoltaic module uses the Equivalent One-Diode model in 
EnergyPlus. In the current CityEL, the supported parameters are mainly 
listed in Table 3. Users can adjust these parameters to set the specific 
characteristics of the photovoltaics. As shown in Fig. 7, the modeling of 
photovoltaics places a photovoltaic panel at the center of the building 
and estimates its power generation potential using a covered roof area 
percentage of 60 %.

After completing the energy simulations, CityEL supports users in 
conducting economic analysis and allows them to input the retrofit cost 
per unit. The retrofit costs for glass, walls, and roofs are calculated per 
square meter, while window shades and the Coefficient of Performance 
(COP) improvements are calculated per unit. These specific retrofit units 
are automatically retrieved from the EnergyPlus model and multiplied 
by the input prices.

The specific retrofit parameters in the case study were primarily 
based on two mandatory national standards in China: the Technical 
Standard for Nearly Zero Energy Buildings (GB/T51350–2019) and the 
Standard for Lighting Design of Buildings (GB 50,034–2024), as sum
marized in Table 4. The material prices used are sourced from a con
struction material pricing website in China. Users can also input their 
prices for their input materials. The total cost, including the material, 
labor, and other expenses, can be calculated using Eq. (1): 

C = Cm + CL + CO (1) 

Table 2 
The baseline parameters of the prototype buildings in this case study.

Residential part Commercial part

Parameters Pre- 
2001

2002–2009 Post- 
2010

Pre- 
2005

2006–2014 Post- 
2015

Exterior wall 
U-value(W/ 
(m2⋅K))

1.96 1 0.8 2 1 0.6

Roof U-value 
(W/(m2⋅K))

1.66 0.8 0.5 1.5 0.7 0.4

Window U- 
value (W/ 
(m2⋅K))

6.6 3.2 2.8 6.4 3 2.6

Window 
SHGC

0.85 0.48 0.34 0.69 0.43 0.35

Lighting 
power density 
(W/m2)

7 7 6 15 11 9

Equipment 
power density 
(W/m2)

4.3 4.3 4.3 20 20 15

Occupancy 
(person/m2)

0.05 0.05 0.05 0.125 0.125 0.125

Cooling/ 
heating 
setpoints ( ◦C)

26/ 
18

26/18 26/ 
18

26/ 
20

26/20 26/20

Cooling/ 
heating COP

2.2/1 2.3/1.9 2.9/ 
2.2

4.2 5.1 5.6
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Where Cm is the price of materials as shown in, Cm is the labor cost, 
and Cm represents the other costs, Based on the investigation by He et al., 
in mainland Chinese cities, the ratio between labor cost and material 
cost is 20 % and 60 %, respectively. Users can also customize these 

parameters in CityEL.
For rooftop photovoltaic settings, commonly available photovoltaic 

modules are used in the case study, with prices and parameters refer
enced from the Chinese photovoltaic website: guangfu.bjx.com.cn. The 
tilt angle of the photovoltaics is set according to the latitude of Shanghai 
to achieve optimal photovoltaic generation efficiency. The government 
subsidy amounts are derived from the "Huangpu District Energy Conser
vation and Emission Reduction Special Fund Management Measures," with 
specific parameters referenced from Table 5.

2.6. Aggregate method

The aggregation process of the neighborhoods is as shown in Fig. 6, 
after the front-end uploads the neighborhoods GeoJSON, it is split into 
multiple neighborhoods for parallel processing. Then, the geographic 
analysis module identifies buildings within each neighborhood, defined 
as those with at least 80 % of their area falling within the neighbor
hoods. The EnergyPlus results of these buildings are classified as the 

Fig. 5. The generation of retrofitted building model by enhanced AutoBPS-retrofit.

Table 3 
The supported parameters for photovoltaic retrofit.

Description Typical Value Range

PV cell type Crystalline Silicon, Amorphous Silicon
Number of cells in a PV module 36–72
Current at maximum power 5–10 A
Voltage at maximum power 20–40 V
Short circuit current 6–12 A
Open circuit voltage 20–60 V
PV module area 0.5–2 m²
Tilt angle from horizontal 0–90◦

Orientation North, East, South, West
Covered roof area percentage 1 %− 100 %

Table 4 
The ECMs materials used in the case study.

Construction Year built Indicator Baseline Retrofit Measure Specific Material Price 
(CNY)

Price 
(USD)

Exterior wall Pre-2001 U value W/(m2⋅K) 1.96 0.36 Adding EPS layers 80 mm 42.07/m2 6.00/m2

2001–2010 1 0.39 60 mm 34.15/m2 4.87/m2

2010-After 0.8 0.39 50 mm 30.19/m2 4.30/m2

Roof Pre-2001 Thickness (mm) 1.66 0.29 Adding EPS layers 90 mm 46.03/m2 6.56/m2

2001–2010 0.8 0.34 65 mm 36.13/m2 5.15/m2

2010-After 0.5 0.34 35 mm 24.25/m2 3.45/m2

Window Pre-2001 U value W/(m2⋅K) 6.6 1.6 Replacing existing windows with 
Low-e glazing

5 + 12Ar+ 5Low-e +
12Ar+5low-e

139/m2 19.8/m2

2001–2010 3.2 1.6
2010-After 2.8 1.6
Pre-2001 SHGC W/(m2⋅K) 0.85 0.287
2001–2010 0.48 0.287
2010-After 0.34 0.287

External 
shading

Pre-2001 Depth m 0 0.5 Adding 90◦ overhang to windows facing south 500/each 71.3/ 
each

2001–2010 0 0.5 ​ ​ ​
2010-After 0 0.5 ​ ​ ​

Air conditioner Pre-2001 Cooling/Heating 
COP

2.2/1 3.2/2.4 Change to high-efficiency air condition 3000/ 
each

430/each

2001–2010 2.3/1.9 ​ ​ ​ ​
2010-After 2.9/2.2 ​ ​ ​ ​
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target building results, and CityEL aggregates these results into the 
neighborhoods results.

Baseline and retrofitted results include total, sub-metered, and 
hourly results. Total results provide an overview of total electricity 
consumption, including heating, cooling, interior lighting, interior 
equipment, and fans, along with the total usage. Sub-metered results 
break down the electricity consumption by category and summarize 
equipment for chillers, boilers, pumps, and cooling towers. Hourly re
sults provide hourly data for 8760 h, including outdoor temperature, 
humidity ratio, relative humidity, wind speed, etc. It also includes 
electricity-related data on electricity load center-produced energy, 
cooling electricity usage, facility electricity usage, plant electricity 
usage, etc.

Each retrofitted building has an economic result, including changes 
in energy consumption before and after the retrofit, the cost of the en
ergy retrofit, savings in electricity bills (calculated by multiplying en
ergy savings by the cost of electricity), payback period, ect.

2.7. Neighborhood battery storage module

Aggregated power suppliers enable real-time price response. The 
EnergyPlus battery storage module is designed for standalone buildings, 
which is uncommon in China, where the whole neighborhood is 
managed as a unit. CityEL cloned the EnergyPlus Battery Storage mod
ule on the back-end but only uses its simple model, namely the con
strained bucket with energy losses model. The generator load request 
(Pload− request) is compared to the generator production (Pgen− supply) as 
shown in Eq. (2): 

{
Pstor− charge = Pgen− supply − Pload− request Pload− request < Pgen− supply
Pstor− draw = Pload− request − Pgen− supply Pload− request > Pgen− supply

(2) 

The new state of charge (Qt+Δt
stor ) is updated as Eq. (3): 

⎧
⎪⎨

⎪⎩

Qt+Δt
stor = Qt

stor + Pstor− charge⋅ηcharge⋅Δt charging

Qt+Δt
stor = Qt

stor −
Pstor− draw⋅Δt

ηdraw
discharging

(3) 

Where Δt is the length of the system time step in hours.

2.8. Key performance indicators definition

To clarify the impact of building retrofits on energy consumption and 
economic performance, several Key Performance Indicators (KPIs) are 
defined. The Energy Saving Percentage (ESP) is calculated by comparing 
the Energy Use Intensity (EUI) of baseline and retrofit models. The 
calculation for ESP is as follows in Eq. (4): 

ESP =
EUIbaseline − EUIretrofit

EUIbaseline
× 100% (4) 

The PayBack Period (PBP) refers to the time required to recover the 
initial investment as shown in Eq. (5)

PBP =
InitialInvestment
AnnualCashInflow

(5) 

Net Present Value (NPV) represents the difference between the pre
sent value of cash inflows and outflows over a period of time, used to 
assess the profitability of an investment. The NPV calculation is as 
shown in Eq. (6): 

NPV =
∑n

t=0

Rt

(1 + r)t (6) 

WhereRtis the net cash inflow at the time t,ris the discount rate, and 
nis the remaining life of the building. In China, the life span of resi
dential buildings is usually 50 years. The remaining life span of resi
dential buildings built before 2001, 2001–2010, and built after 2010 is 
assumed to be 20 years, 30 years, and 40 years.

The Investment Value Index (IVI) is defined as Eq. (7) to show the 
relationship between energy savings and investment. This index allows 
users to sort and filter neighborhoods based on any interesting criteria. 

IVI =
(

ESP
TotalInvestment

)

× 107 (7) 

Table 5 
The PV settings of the case study.

Parameter Description Selected parameter

PV cell type Crystalline Silicon
Number of cells in a PV module 60
Current at maximum power 7.5 A
Voltage at maximum power 30 V
Short circuit current 8.3 A
Open circuit voltage 36.4 V
PV module area 0.89 m²
Tilt angle from horizontal 31.2◦

Orientation South
Price per unit 3.4 CNY/W
Government subsidy 1.8 CNY/W
Covered roof area percentage 60 %

Fig. 6. The aggregate method in CityEL.
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3. Results

3.1. The enhanced AutoBPS retrofit model results

This work enhanced the quick modeling of building energy retrofits 
in the AutoBPS. The energy retrofits were conducted on 66 building 
types (22 categories, three building years). The specific retrofit measures 
can be referred to in Table 4. An example of the retrofitted models is 
shown in Fig. 7. Visible retrofits include photovoltaic panels and win
dow overhangs.

The Energy Saving Percentage (ESP) and the NPV results of the ret
rofitted buildings can be seen in Fig. 8. The size of the squares represents 
the ESP—the larger the square, the more effective the retrofit. The color 
of the squares indicates the NPV—the darker the color, the better the 
economic return. The red squares indicate that the building type has no 
profit.

Fig. 8 shows that nearly all buildings achieve some energy savings 
after retrofits. However, the energy-saving potential varies significantly 
depending on the building’s age and function. Generally, older buildings 
have greater energy-saving potential. This is primarily due to aging 
envelope and the use of outdated HVAC systems in older buildings, 
which were often constructed under less strict building energy perfor
mance standards. These factors contribute to poor thermal performance, 
including insulation, windows, and lighting systems. As building energy 
saving technology has advanced, newer buildings follow stricter energy 
standards, which include HVAC upgrades, better insulation, and LED 
lighting, giving older buildings more potential for energy savings. For 
example, medium-sized office buildings constructed before 2005 offer 
the highest retrofitting potential, achieving energy savings of up to 46.5 
%. In contrast, newer buildings, such as restaurants built after 2015, 
were designed according to modern energy efficiency standards and 
thus have limited room for improvement, with energy-saving potential 
as low as 0.15 %.

In addition to building envelope parameters, the building type and 
operational patterns play a critical role in determining the effectiveness 
of retrofits. Medium and large office buildings typically have stable and 
predictable energy consumption patterns throughout working hours, 
making them more suitable for retrofits aimed at improving HVAC 
systems and reducing energy use during peak demand periods. On the 
other hand, buildings such as restaurants or low-rise apartments exhibit 
more volatile or lower energy use, which limits the potential impact of 
energy-saving measures. For instance, restaurants’ energy consumption 
often fluctuates based on customer demand, and their limited operating 
hours reduce the overall effectiveness of energy efficiency upgrades.

Although most building types can achieve energy savings with 

retrofit, not all retrofits are economically viable. Fig. 8 shows that 
certain building types, including low-rise apartment shops, low-rise 
apartments, elementary schools, restaurants, and standalone retail 
stores, as well as newer high-rise apartments, high-rise apartment shops, 
and office malls, did not yield positive returns on investment. These 
buildings typically have lower overall energy consumption, and even 
after retrofitting, the absolute energy savings may not be sufficient to 
offset the high upfront costs of retrofits, such as materials, labor, and 
installation. For example, schools and low-rise residential buildings, 
while benefiting from improved insulation or HVAC systems, often 
generate limited financial returns due to their relatively low baseline 
energy consumption. As a result, the NPV for these buildings remains 
negative, as indicated by the red blocks in Fig. 8.

Furthermore, the economic feasibility of retrofitting is strongly 
influenced by the operational conditions and energy intensity of the 
buildings. Buildings with higher baseline energy consumption, such as 
older office buildings or hotels, are more likely to achieve positive 
returns on investment, as their energy savings are sufficient to offset the 
initial retrofit costs. In contrast, newer buildings, particularly those 
already equipped with efficient energy systems, offer limited opportu
nities for further savings, reducing the economic attractiveness of 
retrofits.

3.2. Results for the whole district

UBEM establishment involves two main paradigms. The first para
digm collects geometric data for various buildings types to create pro
totype buildings, calculate building areas, and perform multiplications. 
The second paradigm calculates results for individual buildings and then 
summarizes them. CityEL provides analytical support for both para
digms. For the method using prototype buildings, CityEL offers the 
geometric statistical analysis, the result as shown in Table 6 (see also 
Fig. 16), which provides statistical geometry data for each building type, 
including average length, width, and number of floors, as well as the 
corresponding area and distribution, which could support the method of 
summarizing using prototype buildings. CityEL can directly generate the 
corresponding prototype buildings, and the related data can be down
loaded for further processing.

This case study used the individual building calculation paradigm, 
which takes the shading between buildings into account and allows 
more specific energy-saving modifications for each building. CityEL 
utilized AutoBPS to create and run 15,868 EnergyPlus models for 7934 
buildings (baseline and deep retrofit models for each building) on a 12th 
Gen Intel(R) Core(TM) i9–12900H @ 2.5 GHz processor, using 12 cores 
in parallel, with an NVIDIA T600 Laptop GPU. The simulations took 22 h 
and 3 min in total, averaging about 2 min per model, and the 

Fig. 7. A retrofitted mid-rise apartment EnergyPlus model.
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computation time for each model varied depending on the building type. 
CityEL provides statistical analysis for the results of this paradigm, 
categorizing energy consumption of different building types by elec
tricity and natural gas as shown in Fig. 9 (see also Fig. 17).

Fig. 9 indicates that, in Huangpu District, large office stores have the 

highest proportion of electricity consumption, followed by high-rise 
residential buildings. This result is consistent with Huangpu District’s 
role as the commercial center of Shanghai.

In this case study, the Energy Use Intensity (EUI) of each building 
varied due to the geometric differences. Fig. 10 illustrates the EUI 

Fig. 8. The ESP and the NPV results for retrofitted buildings.

Table 6 
The geometry distribution of building types.

Building Type Geometry Building Area with year (hm2)

Avg. Width Avg. Length Avg. Story Before 2005 2005–2015 After 2015

Hotel-residential 19.61 41.42 6.42 3.28 57.80 6.32
High-rise Apartment-stores 21.31 31.82 15.26 3.63 98.51 13.52
High-rise Apartment 19.75 35.04 13.97 243.44 852.84 171.19
Hospital 17.42 28.51 5.92 4.99 47.57 1.79
Hotel-mall 19.02 30.80 7.75 28.75 94.66 21.22
Hotel-office 17.89 27.09 10.00 2.64 4.97 0
Large Hotel 33.18 49.31 11.62 16.52 67.80 5.41
Large Office 27.66 42.07 17.62 69.70 67.75 11.23
Large Office-stores 20.68 34.58 8.48 162.13 355.60 56.06
Low-rise Apartment-stores 12.67 32.29 2.62 1.17 0.78 0.54
Low-rise Apartment 14.70 26.46 2.09 37.02 148.19 91.31
Medium Office 28.08 41.64 8.20 34.96 41.95 4.01
Mid-rise Apartment-stores 12.35 26.97 4.36 0.24 1.61 0.10
Mid-rise Apartment 16.67 34.88 4.11 16.44 246.54 38.99
Primary School 18.03 30.31 4.17 3.31 80.42 8.35
Retail Standalone 27.91 42.78 5.74 4.82 28.71 0.29
Shopping mall 18.63 31.72 4.16 22.22 123.56 53.69
Small Hotel 20.77 37.09 11.94 0.00 12.44 2.51
Others 20.55 36.68 4.88 29.60 47.69 53.43
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Fig. 9. Total energy consumption of different building types.

Fig. 10. The distribution of the building EUI.
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distribution of these buildings (see also Fig. 18). All types of buildings 
experienced a reduction in EUI after energy retrofits with varying de
grees. Medium office buildings demonstrated the most significant en
ergy savings. Fig. 10 also includes some reference EUI data from 
measured building data in research papers and government reports from 
Shanghai (Shanghai Municipal Commission of Housing & Urban-Rural 
Development, 2024). However, for some composite buildings, there is 
still a lack of relevant reference literature to provide measurement 
ranges. It can be observed that the majority of prototype buildings fall 
within the reference range.

As shown in Fig. 11, The baseline annual electricity consumption of 
buildings in Huangpu District was approximately 864.13 GWh, and 
natural gas consumption was 318.14 GWh. If all energy-saving mea
sures, collectively referred to as a Deep Retrofit, were implemented, the 
deep retrofitted electricity consumption was 721.34 GWh, and the nat
ural gas consumption was 297.29 GWh, this represents an electricity 
saving of 16.5 % and a natural gas saving of 6.5 %. For primary energy 
conversion, the primary energy conversion factor for electricity is 2.5, 
and for natural gas is 1.1. The primary energy savings for electricity is 
356.975 GWh, and for natural gas is 22.935 GWh. The combined pri
mary energy savings amount to 379.91 GWh, leading to an overall pri
mary energy saving rate of approximately 15.1 %. If PV systems are 
included, Huangpu District could generate an additional 113.9 GWh of 
electricity, increasing the overall primary energy saving rate to 26.48 %. 
For neighborhoods where only economically feasible energy-saving 
measures are considered, the saving rate is 8 %, which can rise to 19 
% when combined with PV systems.

If only neighborhoods with a positive economic benefit (NPV > 0) 
are considered for energy-saving renovations, as shown in Fig. 13, 245 
out of 304 neighborhoods are worth renovating. After renovation, 
electricity consumption would be 786.4 GWh and gas consumption 
would be 303.2 GWh, resulting in energy savings of 8.9 % and 4.7 %, 
respectively. And the total energy retrofit cost for Huangpu District is 
approximately 1.27 billion CNY, equivalent to 178.6 million USD. As a 
reference, Huangpu District’s expenditure on old neighborhoods 

renovations in 2021 was about 0.13 billion CNY.
Understanding the peak and off-peak electricity consumption of the 

city is important, especially regarding the interaction between energy 
use and PV generation, to minimize waste and avoid the duck curve. 
CityEL provides the hourly result analysis: Fig. 12 displays the hourly 
results of UBEM, which can be selected between baseline and retrofit 
scenarios, with the default retrofit scenario corresponding to the con
ditions in Table 4. Fig. 12 shows that PV generation significantly reduces 
urban energy consumption, and CityEL identifies the times when rooftop 
PV generation exceeds urban energy consumption, with a surplus of 
3689.56 GWh, providing a reference for energy storage configuration 
(see also Fig. 19).

3.3. Results for the individual buildings

Individual buildings received less attention in previous UBEM tools 
because they were not the primary focus of UBEM. However, checking 
data for individual buildings helps reduce significant errors. CityEL 
conducts statistics and analyses for each building to enhance error 
detection. Besides providing detailed information checks for buildings 
when clicked as shown in Figs. 20 and 21. This function allows users to 
quickly identify potential issues with any building.

3.4. Results for the Neighborhoods

The summary of results for each neighborhood is shown in Fig. 13. 
CityEL clearly identifies which neighborhoods have the highest energy 
retrofit potential and calculates the return on energy retrofitting for 
these neighborhoods. As seen in Fig. 13a, almost all neighborhoods in 
the Huangpu District have some energy retrofit potential, with the 
highest reaching 33.82 %. These neighborhoods are relatively concen
trated and located in earlier developed areas. Fig. 13b shows that 
although some neighborhoods have energy retrofit returns as high as 
40.2 million CNY, equivalent to 5.65 million USD, there are still some 
neighborhoods that do not have economic feasibility for energy 

Fig. 11. Total annual energy consumption for different scenarios in Huangpu District.
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retrofitting.
The method for checking the results of the neighborhood is similar to 

that for individual buildings. Taking an ESP top-ranked neighborhood 
"B00152EBDF" as an example, this neighborhood consists of mixed 
building types: two low-rise residential buildings, two high-rise resi
dential buildings, and a hotel-mall. As shown in Fig. 14, the energy 
consumption curve on the summer solstice day indicates that this 
neighborhood experiences peak electricity usage at night (due to cool
ing). Daytime energy consumption is lower (as occupants go to work or 
school). However, the neighborhood maintains a certain level of 

daytime energy consumption, which is characteristic of the hotel-malls. 
CityEL captures the energy usage distribution over time for the entire 
neighborhood. It could be observed that energy-saving retrofits had an 
impact comparing Fig. 14(a) and (b). Although the energy usage dis
tribution over time remains unchanged (since CityEL did not change the 
occupant behavior schedule), the overall energy consumption changed, 
the peak demand has decreased from 1063.44 kWh to 813.93 kWh, and 
the total energy consumption has also reduced, which alters the rela
tionship between energy consumption, PV generation, and energy 
storage. In the baseline scenario, PV generation is almost fully 

Fig. 12. Hourly energy demand for summer solstice and winter solstice of Huangpu district.

Fig. 13. Energy savings potential and economic analysis across neighborhoods.
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consumed, and only 50 kWh of storage is needed to store all available PV 
generation. In the retrofit scenario, setting up 150 kWh of energy storage 
helps enhance overall neighborhood energy savings. This feature of 
CityEL assists users in determining the appropriate storage configuration 
for the neighborhood as shown in Fig. 25.

3.5. Advanced analysis for the neighborhoods

CityEL could conduct advanced analyses of each building and com
munity to help determine the optimal energy retrofit strategies. This step 
generates EnergyPlus models for each energy retrofit measure. Then, it 
computes the results, which are computationally intensive and cannot 
be applied to the entire building cluster at once. Instead, after identi
fying the neighborhood with the highest retrofit potential, users confirm 
the execution.

This study conducted an advanced analysis of various energy retrofit 
measures within the B00152EBDF neighborhood, which included mixed 
building types: two low-rise residential buildings, two high-rise resi
dential buildings, and a hotel-mall. The energy-saving effects and in
vestments analyzed are shown in the Fig. 15.

For this B00152EBDF neighborhood, the most effective measures for 
energy savings are air conditioning and wall retrofits. Given the building 
types, air conditioning upgrades are crucial for improving cooling and 
heating efficiency, especially for residential buildings that previously 
relied on inefficient units, cooling is the primary concern in Shanghai, 
and natural gas is mainly used for hot water, so modifications to 

windows and shading have minimal impact on hot water usage. Wall 
retrofits are also effective for reducing heat gain in summer and 
enhancing winter insulation, benefiting all residential types. For the 
hotel-mall complex, roof insulation and HVAC system upgrades provide 
the greatest benefits. From the perspective of investment return on en
ergy retrofits, air conditioning offers the highest returns in the 
B00152EBDF neighborhood because it directly enhances cooling and 
heating efficiency, leading to quick, significant energy savings. Roof and 
wall retrofits require higher initial costs and longer payback periods, but 
they are still beneficial. Therefore, for this neighborhood, the recom
mended retrofits are air conditioning, roof, and wall improvements.

4. Discussion

Existing UBEM studies often focus on overall results, with less 
emphasis to individual building results and neighborhoods summaries. 
This paper introduces CityEL, a new UBEM tool that enables quick access 
to energy consumption results for individual buildings within the UBEM 
and regional summaries. These features make CityEL a valuable tool for 
analyzing energy-saving renovations at the neighborhood level. In this 
paper, a suitable neighborhood for energy-saving renovations was 
selected and analyzed among 304 neighborhoods in Huangpu District, 
Shanghai. The optimal energy-saving measures were identified.

CityEL offers extensive scalability. A related review (Kamel, 2022) 
indicates that UBEM studies can involve from tens to hundreds of 
thousands of buildings. CityEL’s aggregation method creates multiple 

Fig. 14. Hourly result of a neighborhood for baseline and retrofit scenario.

Fig. 15. The energy-saving effects of various measures within the neighborhood.

C. Song et al.                                                                                                                                                                                                                                    Sustainable Cities and Society 120 (2025) 106147 

14 



small UBEMs within a larger study area, allowing for comparisons be
tween them. In this case study, residential neighborhoods were used as 
an example, but in practical applications, the area division is 
user-defined. It can also quickly analyze several large neighborhoods of 
a city or perform grid analysis. Additionally, CityEL uses AutoBPS as its 
engine, which is continuously evolving, with all future AutoBPS func
tionalities integrated into CityEL.

Compared to similar web-based UBEM tools, CityEL’s features are 
distinct. While CEA (Cevallos-Sierra, Pinto Gonçalves & Santos Silva, 
2024) uses its own engine, CityEL employs the more widely recognized 
EnergyPlus as its calculation engine. EnergyPlus is designed for energy 
consumption calculations of individual buildings, and CityEL enables 
users to quickly view various results for individual buildings, thereby 
making its energy consumption calculations more precise. Furthermore, 
compared to CityBES (Hong et al., 2024), which mainly supports office 
and commercial buildings, CityEL accommodates a broader range of 
building types, including those developed by DOE, ASHRAE, and 
AutoBPS for Chinese buildings. While UBEM.io (Ang et al., 2022) pri
marily functions as an input file generator and output result analyzer, 
requiring tools like Rhino and UMI for actual calculations, CityEL is a 
fully integrated platform for both front-end input and back-end calcu
lations, eliminating the need for additional tools.

CityEL has some limitations and potential development directions. 
First, CityEL’s calculations rely on EnergyPlus, leading to high compu
tational resource consumption. Considering energy-saving renovations 
(which exponentially increase model generation), using a personal 
computer as a server to calculate 10,000 buildings might take several 
days. Therefore, CityEL is currently used only as a local tool and is not 
yet available online. Second, CityEL still employs simplified strategies 
for many functions of its models, including photovoltaic and energy 
storage modules, but CityEL reserved interfaces for these modules, 
allowing future integration of more advanced algorithms. Third, many 
retrofit measures in urban renovations, such as installing elevators, 
require further research for accurate modeling. Fourth, CityEL currently 
does not support demand response or adjustments based on occupant 
schedules, which should be incorporated in future studies. Finally, the 
data required by CityEL needs to be downloaded and organized by users 
according to specific requirements, which still poses a significant bar
rier. In future development, efforts will be made to provide simpler 
methods to guide users in obtaining the necessary data of their city.

5. Conclusions

This paper introduces CityEL, a web-based UBEM tool powered by 
AutoBPS, proficient in regional aggregation analysis. CityEL facilitates 
scalable and rapid neighborhood-level energy analyses, offering a 
practical framework for urban renewal projects, overall, this paper 
makes the following contributions: 

• Development of a scalable platform: CityEL provides capabilities for 
aggregating and comparing energy retrofit options across multiple 
neighborhoods, enabling policymakers and planners to evaluate and 
prioritize renovation strategies efficiently.

• Enhanced retrofit modeling: The existing AutoBPS-retrofit module 
was enhanced by providing a method for the rapid generation of 

EnergyPlus models for various retrofit measures, including walls, 
roofs, shading, lighting upgrades, and HVAC system enhancements.

• Neighborhood-level decision-making support: CityEL supports 
neighborhood-level decision-making through quickly comparative 
analysis, as demonstrated in Shanghai’s Huangpu District. Modeling 
7934 buildings and evaluating 304 neighborhoods, it identified 245 
economically viable retrofits, achieving 8.9 % electricity and 4.7 % 
gas savings, showcasing its efficiency in large-scale data processing 
and cost-effective planning.

• Policy and planning implications: CityEL provides a reproducible 
framework for urban energy planning, equipping policymakers with 
the tools to prioritize retrofitting efforts based on energy and eco
nomic outcomes. Its ability to integrate spatial and energy data 
supports informed, scalable urban renewal strategies.

In conclusion, CityEL integrates AutoBPS with GIS tools to offer an 
efficient and scalable platform for evaluating urban building energy 
performance and comparing retrofitting strategies across neighbor
hoods. By enabling rapid modeling and multi-scenario analysis, CityEL 
addresses gaps in traditional tools for multi-scale energy assessments 
and provides significant support for advancing the methodological 
framework of urban energy management.
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Appendix A. The Screenshots of CityEL

Fig. 16. Screenshot of buildings geometry statics from CityEL.

Fig. 17. Screenshot of the baseline UBEM results from CityEL.
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Fig. 18. Screenshot of UBEM EUI Result from CityEL.

Fig. 19. UBEM hourly result for the baseline scenario.
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Fig. 20. Detailed information and the results of an individual building.

Fig. 21. Hourly result of an individual building.
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Fig. 22. Building energy information statics.

Fig. 23. Detailed information and the results of a Neighborhood.
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Fig. 24. Neighborhood energy information statics.

Fig. 25. Hourly result of a neighborhood for baseline and retrofit scenario.

Data availability

Data will be made available on request.
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